если три стороны одного треугольника равны трем сторонам другого треугольника то такие треугольники
3 признак равенства треугольников
(Третий признак равенства треугольников — по трём сторонам)
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
Дано:
Приложим треугольник A1B1C1 к треугольнику ABC так, чтобы
При этом возможны три случая взаимного расположения луча CC1 и угла ACB.
I. Луч CC1 проходит внутри угла ACB.
Проведём отрезок CC1.
По условию AC=A1C1 и BC=B1C1, поэтому треугольники ACC1 и BCC1 — равнобедренные с основанием CC1.
Если к равным углам прибывать равные углы, то получим равные углы:
Таким образом, ∠ACB=∠AC1B.
Точки A1 и A, B1 и B совмещены, то есть ∠AC1B и ∠A1C1B1 — один и тот же угол.
Для треугольников ABC и A1B1C1 имеем:
Следовательно, ΔABC= ΔA1B1C1 (по 1 признаку равенства треугольников).
II. Луч CC1 проходит внутри угла ACB.
Так как AC=A1C1 и BC=B1C1, треугольники ACC1 и BCC1 — равнобедренные с основанием CC1 и ∠ACC1=∠AC1C и ∠BCC1=∠BC1C (как углы при основании).
Если из равных углов вычесть равные углы, то получим равные углы:
III. Луч CC1 совпадает со стороной угла ACB.
По условию BC=B1C1, поэтому треугольник BCC1 — равнобедренный с основанием CC1.
Отсюда ∠C1=∠C (как углы при основании) и ΔABC= ΔA1B1C1 (по 1 признаку равенства треугольников).
Признаки равенства треугольников
Первый признак равенства треугольников
Конечно, равенство треугольников всегда можно доказать наложением одного треугольника на другой. Но, согласитесь, — это несерьезно. Какое может быть наложение, когда есть три теоремы и можно их доказать.
Давайте рассмотрим три признака равенства треугольников.
Теорема 1. Равенство треугольников по двум сторонам и углу между ними.
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
При наложении △A1B1C1 на △ABC вершина A1 совмещается с вершиной A, и сторона A1B1 накладывается на сторону AB, AC — на сторону A1C1.
Сторона A1B1 совмещается со стороной AB, вершина B совпадает с вершиной B1, сторона A1С1 совмещается со стороной AС, вершина C совпадает с вершиной C1.
Значит, происходит совмещение вершин В и В1, С и С1.
Второй признак равенства треугольников
Теорема 2. Равенство треугольников по стороне и двум прилежащим к ней углам.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Путем наложения △ABC на △A1B1C1, совмещаем вершину А с вершиной A1, вершины В и В1 лежат по одну сторону от А1С1.
Тогда АС совмещается с A1C1, вершина C совпадает с C1, поскольку мы знаем, что АС = A1C1.
AB накладывается на A1B1, поскольку мы знаем, что ∠A = ∠A1.
CB накладывается на C1B1, поскольку мы знаем, что ∠C = ∠C1.
Вершина B совпадает с вершиной B1.
Третий признак равенства треугольников
Теорема 3. Равенство треугольников по трем сторонам.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Доказательство 3 признака равенства треугольников:
Приложим △ABC к △A1B1C1 таким образом, чтобы вершина A совпала с вершиной A1, вершина B — с вершиной B1, вершина C и вершина C1 лежат по разные стороны от прямой А1В1.
Кроме трех основных теорем, запомните еще несколько признаков равенства треугольников.
Равны ли треугольники, можно определить не только по сторонам и углам, но и по высоте, медиане и биссектрисе.
Как видите, доказать равенство треугольников можно по множеству признаков и десятком способов. Три признака равенства треугольников — основные. Все остальные способы также стоит запомнить, ведь треугольник — только с виду простая фигура.