Как сделать рандомное число питон

Python 3: Генерация случайных чисел (модуль random)¶

«Генерация случайных чисел слишком важна, чтобы оставлять её на волю случая»

Python порождает случайные числа на основе формулы, так что они не на самом деле случайные, а, как говорят, псевдослучайные [1]. Этот способ удобен для большинства приложений (кроме онлайновых казино) [2].

[1]Википедия: Генератор псевдослучайных чисел
[2]Доусон М. Программируем на Python. — СПб.: Питер, 2014. — 416 с.: ил. — 3-е изд

Модуль random позволяет генерировать случайные числа. Прежде чем использовать модуль, необходимо подключить его с помощью инструкции:

random.random¶

random.random() — возвращает псевдослучайное число от 0.0 до 1.0

random.seed¶

random.seed( ) — настраивает генератор случайных чисел на новую последовательность. По умолчанию используется системное время. Если значение параметра будет одиноким, то генерируется одинокое число:

random.uniform¶

random.randint¶

random.choince¶

random.choince( ) — возвращает случайный элемент из любой последовательности (строки, списка, кортежа):

random.randrange¶

random.shuffle¶

random.shuffle( ) — перемешивает последовательность (изменяется сама последовательность). Поэтому функция не работает для неизменяемых объектов.

Вероятностные распределения¶

random.expovariate(lambd) — экспоненциальное распределение. lambd равен 1/среднее желаемое. Lambd должен быть отличным от нуля. Возвращаемые значения от 0 до плюс бесконечности, если lambd положительно, и от минус бесконечности до 0, если lambd отрицательный.

random.gauss(значение, стандартное отклонение) — распределение Гаусса.

random.normalvariate(mu, sigma) — нормальное распределение. mu — среднее значение, sigma — стандартное отклонение.

random.vonmisesvariate(mu, kappa) — mu — средний угол, выраженный в радианах от 0 до 2π, и kappa — параметр концентрации, который должен быть больше или равен нулю. Если каппа равна нулю, это распределение сводится к случайному углу в диапазоне от 0 до 2π.

random.paretovariate(alpha) — распределение Парето.

random.weibullvariate(alpha, beta) — распределение Вейбулла.

Примеры¶

Генерация произвольного пароля¶

Хороший пароль должен быть произвольным и состоять минимум из 6 символов, в нём должны быть цифры, строчные и прописные буквы. Приготовить такой пароль можно по следующему рецепту:

Этот же скрипт можно записать всего в две строки:

Данная команда является краткой записью цикла for, вместо неё можно было написать так:

Данный цикл повторяется 12 раз и на каждом круге добавляет к строке psw произвольно выбранный элемент из списка.

Источник

Рандом (random) в Python — как генерировать случайные числа

С лучайные числа применяются в программировании в разных случаях, например, для моделирования процессов и в видеоиграх. Для начала разберёмся, какую последовательность можно назвать случайной.

Случайной последовательностью называют набор элементов, полученных таким образом, что любой элемент их этого набора никак не связан ни с каким другим элементом. При этом в программировании обычно последовательность не является строго случайной — в ней для генерации следующего элемента используется предыдущий.

Как работают случайные числа

Полностью случайные числа генерируются истинным генератором случайных чисел (TRNG). Их можно получить, например, бросанием кубика или доставанием шаров из урны. Так как подобных устройств нет в компьютере, то в нем можно получить только «псевдослучайные» числа.

В Python, как и во всех остальных языках программирования, используется генератор псевдослучайных чисел, который выдает как будто случайные, но воспроизводимые числа.

Чтобы понять, как работают генераторы псевдослучайных чисел, рассмотрим работу одного из первых подобных генераторов. Его алгоритм работы был разработан Нейманом. В нем первое число возводят в квадрат, а потом из полученного результата берут средние цифры. Например, первое число 281, возводим его в квадрат, получаем 78961 и берем три цифры, находящиеся в середине – 896. После этого для генерации следующего числа используем 896.

Модуль random

👉 Как использовать: чтобы начать использовать встроенные генераторы случайных чисел, нужно сначала подключить модуль рандом:

После этого можно вызывать методы модуля random :

В модуле random существуют методы для генерации целых чисел, с плавающей точкой, для работы с последовательностями. Кроме этого существуют функции для управления генератором и генерации различных последовательностей. Рассмотрим основные из этих методов.

Случайные целые числа (int)

Перечислим основные функции, которые есть в модуле random для выдачи случайных целых чисел.

randint Функция randint(a, b) получает на вход два целых числа и возвращает случайное значение из диапазона [a, b] (a и b входят в этот диапазон).

import random random_number = random.randint(0, 125) print(random_number) > 113

randrange В функцию randrange(start, stop[, step]) передают три целых числа:

На выходе функция выдает случайное число в заданном диапазоне.

import random random_number = random.randrange(1, 100, 2) print(random_number) > 43

Случайные вещественные числа (float)

Перечислим функции, которые выдают вещественные числа.

random Функция random() выдает вещественные числа, в диапазоне [0.0, 1.0) (включая 0.0, но не включая 1.0).

import random random_number = random.uniform(7.3, 10.5) print(random_number) > 10.320165816501492

Случайные элементы из последовательности

В модуле random языка Python есть несколько функций, которые можно применять для работы с последовательностями.

choice С помощью функции choice(seq) можно выбрать один элемент из набора данных. В качестве единственного аргумента в функцию передаётся последовательность. Если последовательность будет пустой (то есть в ней не будет ни одного элемента), получим ошибку «IndexError».

import random seq = [10, 11, 12, 13, 14, 15] random_element = random.choice(seq) print(random_element) > 12

import random seq = [«Cappuccino», «Latte», «Espresso», «Americano»] random.shuffle(seq) print(seq) > [‘Espresso’, ‘Americano’, ‘Latte’, ‘Cappuccino’]

На выходе получаем k уникальных случайных элементов из последовательности.

Если в исходной последовательности есть неуникальные (повторяющиеся) элементы, то каждый их них может появиться в новом списке.

Управление генератором

Генерация чисел в Python не совсем случайна и зависит от состояния генератора случайных чисел. Рассмотрим функции, с помощью которых можно управлять состоянием этого генератора.

getstate Метод getstate() модуля random возвращает объект, в котором записано текущим состояние генератора случайных чисел. Его можно использовать для восстановления состояния генератора. Эта функция не имеет параметров.

import random state = random.getstate() # сохраняем текущее состояние генератора random_number_1 = random.random() # получаем случайное число print(random_number_1) # > 0.42164837822065193 # первое случайное число random_number_2 = random.random() print(random_number_2) # > 0.2486825504535808 # второе случайное число random.setstate(state) # восстанавливаем состояние генератора random_number_3 = random.random() # снова генерируем число print(random_number_3) # > 0.42164837822065193 # новое число равное первому, сгенерированному с тем же состояние генератора

seed Генератору случайных чисел нужно число, основываясь на котором он сможет начать генерировать случайные значения.

Вероятностное распределение

В теории вероятностей важную роль играет понятие распределение вероятностей. Оно показывает с какой вероятность может наступить каждое из возможных событий. С его помощью можно моделировать как наступление дискретных событий (например, бросание монеты, количество телефонных разговоров за неделю, количество пассажиров в автобусе), так и непрерывных (например, длительность разговора, количество осадков за год, расход электричества за месяц).

Для наглядности рассмотрим самое распространенное нормальное распределение вероятностей. На рисунке ниже приведена кривая нормального распределения.

В модуле random существуют функции, которые позволяют использовать различные методы вероятностных распределений:

Best practices

Приведем несколько примеров использования случайных чисел.

Пример #1 — случайная задержка (random sleep)

Иногда необходимо сделать так, чтобы программа работала с задержками. Например, это актуально при парсинге сайта (при частых запросах некоторые сайты могут вас банить).

import random import time page_list = [«site.ru/page1», «site.ru/page2», «site.ru/page3»] for page in page_list: # # some actions # time.sleep(random.randint(1, 3)) # задержка от 1 до 3 секунд

💭 Для имитации действий человека можно использовать random.uniform(1, 3) — это добавит случайные миллисекунды к вашим задержкам.

Пример #2 — выбор случайного элемента из списка (с учетом веса)

Дано: веб-сайт. В базе данных 4 баннера, к каждому баннеру указан вес (приоритет к показу).

Необходимо рандомно показывать на сайте 1 баннер, в зависимости от его веса.

Пример #3 — случайный пароль

С помощью генератора случайных чисел можно создавать пароли. Например, сгенерировать стойкий пароль можно так:

import random import string pwd_length = 0 while pwd_length Укажите длину пароля (от 12 символов): 12 > JFyc;6-ICxuQ

В данном примере будет сгенерирован пароль, содержащий минимум 12 символов, среди которых точно будет маленькая буква, большая буква, цифра и символ.

Методы модуля random позволяют получить случайные данные с использованием Mersenne Twister. Однако имейте в виду, что данный способ не является криптографически безопасным (для генерирования паролей есть более надежные варианты).

Источник

Модуль random: генерация псевдослучайных чисел в Python

Многим компьютерным приложениям необходимо генерировать случайные числа. Однако ни одно из них не генерирует действительно случайное число. Python, как и многие другие языки программирования, использует генератор псевдослучайных чисел. Генерация случайных чисел в Python основана на алгоритме Вихрь Мерсенна. Этот метод быстрый и потокобезопасный, но не подходит для криптографических целей.

random.getstate() — эта функция вместе с функцией setstate() помогает воспроизводить одни и те же случайные данные снова и снова. Функция getstate() возвращает внутреннее состояние генератора случайных чисел. Больше информации вы можете найти по ссылке.

random.setstate(state) — эта функция восстанавливает внутреннее состояние генератора.

Следующие функции предназначены для генерации случайных целых чисел:

random.randrange() − эта функция генерирует случайное целое число в пределах заданного диапазона чисел. Может принимать три параметра.

Параметры start и step являются необязательными. Их значения по умолчанию равны 0 и 1 соответственно. Шаг ( step ) определяет интервал между последовательными числами.

Примечание: помните, что выходные данные примеров в этой статье могут не совпадать, так как они генерируются случайным образом.

Следующие функции работают со случайными числами с плавающей запятой:

random.random() — эта функция генерирует случайное число с плавающей запятой в диапазоне от 0.0 до 1.0.

Следующие функции работают c последовательностями, а именно — со строками, списками или кортежами:

random.choices() − эта функция случайным образом выбирает несколько элементов из списка. Первый параметр этой функции — последовательность, а второй — количество элементов, которые нужно вернуть. Возвращает список, в котором может повторяться несколько раз один и тот же элемент.

random.shuffle() — эта функция переупорядочивает (перемешивает) элементы в изменяемой (mutable) последовательности и размещает их случайным образом.

random.sample(sequence, n) — эта функция возвращает список случайно выбранных элементов из последовательности. Результирующий список содержит только уникальные элементы.

Более подробную информацию о функциях модуля random вы можете найти в документации.

Источник

Случайное число

Как и многие другие языки программирования, Python позволяет работать с генераторами случайных значений. С их помощью можно оперативно создавать последовательности из различных чисел или символов, предугадать которые невозможно. Для этой цели в Python применяется встроенная библиотека с множеством методов для управляемой генерации.

Что такое случайные числа?

Случайные числа представляют собой произвольные данные, которые были получены в результате автоматической генерации компьютерной программой. Подобная информация используется во многих видах программного обеспечения, где необходимо иметь дело с непредсказуемыми величинами. Ярким примером тому являются игровые автоматы либо казино, в которых каждый раз генерируется новая выигрышная комбинация чисел. Также данный подход применяется в криптографических целях для создания надежных паролей.

Стоит заметить, что стандартные средства Python не способны предоставлять в программе истинно случайные значения. Они предоставляют псевдо случайную последовательность. Инициализируется она от какого либо случайного числа. То есть если мы будем инициализировать последовательность одним и тем же числом, то она будет каждый раз выдавать одинаковые данные. Чтобы этого не было, для инициализации берется значение системных часов.

Так что обычно используется метод генерации псевдослучайных величин с иницилизацией от системных часов.

Реализации случайных чисел в Python

Язык программирования Python содержит в себе несколько разных модулей, применяемых для генерации псевдослучайных величин. Все они, как правило, используют в своих целях текущее системное время, которое установлено на компьютере. Это гарантирует получение разных последовательностей значений при каждом новом обращении к генератору. Среди инструментов, которые предназначены для работы с псевдослучайными числами, находится довольно обширная библиотека random, а также функции numpy.random и os.urandom.

Особенности их применения:

Наиболее широкое применение получила в Python библиотека random. Поэтому далее мы ее и рассмотрим подробно.

Модуль random

Ниже приведена таблица, где описаны самые главные методы из подключаемого модуля, входящего в состав стандартных библиотек Python. В таблице приведены названия функций, а также доступный перечень параметров с небольшой характеристикой.

МетодХарактеристика
random()возвращает число в диапазоне от 0 до 1
seed(a)настаивает генератор на новую последовательность a
randint(a, b)возвращает целое число в диапазоне от a и b
randrange(a, b, c)возвращает целое число в диапазоне от a до b с шагом c
uniform(a, b)возвращает вещественное число в диапазоне от a и b
shuffle(a)перемешивает значения в списке a
choice(a)возвращает случайный элемент из списка a
sample(a, b)возвращает последовательность длиной b из набора a
getstate()возвращает внутреннее состояние генератора
setstate(a)восстанавливает внутреннее состояние генератора a
getrandbits(a)возвращает a случайно сгенерированных бит
triangular(a, b, c)возвращает вещественное число от a до b с распределением c

Здесь хотелось бы описать функцию seed. Она как раз и применяется для задания инициализирующего числа псевдо случайной последовательности. При вызове seed без параметра, берется значение системного таймера. Эта функция вызывается в конструкторе класса Random.

В примерах мы рассмотрим, как применяются основные функции. А так же в конце рассмотрим как используется SystemRandom.

Примеры

Чтобы воспользоваться возможностями генерации случайных чисел в Python 3, следует произвести импорт библиотеки random, вынеся ее в начало исполняемого файла при помощи ключевого слова import.

Вещественные числа

В модуле есть одноименная функция random. В Python она используется чаще, чем другие функции этого модуля. Функция возвращает вещественное число в промежутке от 0 до 1. В следующем примере демонстрируется создание трех разных переменных a, b и c.

Целые числа

Для получения случайных целых чисел в определенном диапазоне используется функция randint, принимающая два аргумента: минимальное и максимальное значение. Программа, показанная ниже отображает генерацию трех разных значений в промежутке от 0 до 9.

Диапазоны целых

Метод randrange позволяет генерировать целочисленные значения, благодаря работе с тремя параметрами: минимальная и максимальная величина, а также длина шага. Вызвав функцию с одним аргументом, начальная граница получит значение 0, а интервал станет равен 1. Для двух аргументов автоматически инициализируется только длина шага. Работа данного метода с трема разными наборами параметров показана в следующем примере.

Диапазоны вещественных

Сгенерировать вещественное число поможет метод под названием uniform. Он принимает всего два аргумента, обозначающих минимальное и максимальное значения. Демонстрация его работы располагается в следующем примере кода, где создаются переменные a, b и c.

Использование в генераторах

Возможности генерации псевдослучайных чисел можно использовать и для создания последовательностей. В следующем фрагменте кода создается набор чисел при помощи генератора списка со случайным наполнением и длиной. Как можно заметить, в данном примере функция randint вызывается дважды: для каждого элемента и размера списка.

Перемешивание

Метод shuffle дает возможность перемешать содержимое уже созданного списка. Таким образом, все его элементы будут находиться в абсолютно случайном порядке. Пример, где отображается работа этой функции со списком a из 10 значений, располагается дальше.

Случайный элемент списка

При помощи функции choice можно извлечь случайный элемент из существующего набора данных. В следующем примере переменная b получает некое целое число из списка a.

Несколько элементов списка

Извлечь из последовательности данных можно не только один элемент, но и целый набор значений. Функция sample позволит получить абсолютно новый список чисел из случайных компонентов уже существующего списка. В качестве первого аргумента необходимо ввести исходную последовательность, а на месте второго указать желаемую длину нового массива.

Генерация букв

Возможности стандартной библиотеки позволяют генерировать не только числа, но и буквы. В следующем примере показывается инициализация трех разных переменных случайными символами латиницы. Для этого необходимо произвести импортирование модуля string, а затем воспользоваться списком letters, который включает все буквы английского алфавита.

Как можно заметить, отображаются буквы в разном регистре. Для того чтобы преобразовать их к общему виду, рекомендуется вызвать стандартные строковые методы upper или lower.

SystemRandom

Как уже говорилось ранее, SystemRandom основана на os.urandom. Она выдает так же псевдослучайные данные, но они зависят дополнительно и от операционной системы. Результаты используются в криптографии. Есть недостаток — то что функции SystemRandom отрабатывают в несколько раз дольше. Рассмотрим пример использования:

Заключение

Таким образом, язык программирования Python содержит массу встроенных методов для генерации и обработки случайных значений. Пользоваться ими можно при помощи разных библиотек, входящих в стандартный набор инструментов платформы. Благодаря данным функциям можно задавать различные условия, а также ограничения для своих генераторов.

Источник

«Случайные» числа в Python – random, randint и randrange

В компьютерных программах нередко требуется эмуляция случайности. Например, при разработке игр. Если в программе имеется некий генератор, то есть производитель, случайного числа, то, используя полученное таким образом число, можно выбирать ту или иную ветку выполнения программы, или произвольный объект из коллекции. Другими словами, главное – сгенерировать число. Эмуляция случайности иного рода основывается на нем.

Мы наверняка не знаем, есть ли в природе случайность, или она нам только кажется из-за ограниченности наших знаний. Мы только знаем, что в программировании настоящей случайности нет. Неоткуда взяться произвольному числу, нельзя запрограммировать его появление из ниоткуда. Можно лишь создать программу, которая в результате применения сложной формулы к «зерну» будет выдавать число, и нам будет казаться, что это число случайно.

«Зерно» – это исходные данные для формулы. Им может быть, например, системное время в миллисекундах, которое постоянно меняется. Следовательно, «зерно» будет постоянно разным. Или программист может задавать его самостоятельно.

Чтобы обращаться к функциям, надо импортировать модуль random :

Или импортировать отдельные функции из него:

Функции для получения целых «случайных» чисел – randint() и randrange()

Функции randint() и randrange() генерируют псевдослучайные целые числа. Первая из них наиболее простая и всегда принимает только два аргумента – пределы целочисленного диапазона, из которого выбирается любое число:

или (если импортировались отдельные функции):

В случае randint() обе границы включаются в диапазон, т. е. на языке математики отрезок описывается как [a; b].

Числа могут быть отрицательными:

Но первое число всегда должно быть меньше или, по-крайней мере, равно второму. То есть a randrange() сложнее. Она может принимать один аргумент, два или даже три. Если указан только один, то она возвращает случайное число от 0 до указанного аргумента. Причем сам аргумент в диапазон не входит. На языке математики – это [0; a).

Если в randrange() передается два аргумента, то она работает аналогично randint() за одним исключением. Верхняя граница не входит в диапазон, т. е. [a; b).

Здесь результатом второго вызова всегда будет число 1.

Функция random() – «случайные» вещественные числа

Чтобы получить случайное вещественное число, или, как говорят, число с плавающей точкой, следует использовать функцию random() из одноименного модуля random языка Python. Она не принимает никаких аргументов и возвращает число от 0 до 1, не включая 1:

Результат содержит много знаков после запятой. Чтобы его округлить, можно воспользоваться встроенной в Python функцией round() :

Чтобы получать случайные вещественные числа в иных пределах, отличных от [0; 1), прибегают к математическим приемам. Так если умножить полученное из random() число на любое целое, то получится вещественное в диапазоне от 0 до этого целого, не включая его:

Если нижняя граница должна быть отличной от нуля, то число из random() надо умножать на разницу между верхней и нижней границами, после чего прибавить нижнюю:

В данном примере число умножается на 6. В результате получается число от 0 до 6. Прибавив 4, получаем число от 4 до 10.

Практическая работа

Используя функцию randrange() получите псевдослучайное четное число в пределах от 6 до 12. Также получите число кратное пяти в пределах от 5 до 100.

Напишите программу, которая запрашивает у пользователя границы диапазона и какое (целое или вещественное) число он хочет получить. Выводит на экран подходящее случайное число.

Примеры решения и дополнительные уроки в android-приложении и pdf-версии курса

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *