Какая фигура называется углом объясни что такое вершина и стороны угла
Геометрическая фигура угол: определение угла, измерение углов, обозначения и примеры
Угол – основная геометрическая фигура, которую разберем на протяжение всей темы. Определения, способы задания, обозначения и измерения угла. Разберем принципы выделения углов на чертежах. Вся теория проиллюстрирована и имеет большое количество наглядных чертежей.
Определение угла
Угол – простая важная фигура в геометрии. Угол напрямую зависит от определения луча, который в свою очередь состоит из базовых понятий точки, прямой и плоскости. Для досконального изучения необходимо углубиться по темам прямая на плоскости – необходимые сведения и плоскость – необходимые сведения.
Понятие угла начинается с понятий о точке, плоскости и прямой, изображенной на этой плоскости.
Обозначение луча допустимо в двух вариациях: одной строчной или двумя прописными буквами латинского алфавита. При обозначении двумя буквами луч имеет название, состоящее из двух букв. Рассмотрим подробнее на чертеже.
Перейдем к понятию определения угла.
Угол – это фигура, расположенная в заданной плоскости, образованная двумя несовпадающими лучами, имеющими общее начало. Сторона угла является лучом, вершина – общее начало сторон.
Имеет место случай, когда стороны угла могут выступать в роли прямой линии.
Когда обе стороны угла расположены на одной прямой или его стороны служат как дополнительные полупрямые одной прямой, то такой угол называют развернутым.
На рисунке ниже изображен развернутый угол.
Угол делит плоскость на две части. В случае, если угол не развернутый, тогда одна часть плоскости имеет название внутренняя область угла, другая – внешняя область угла. Ниже приведено изображение, объясняющее, какие части плоскости внешние, а какие внутренние.
При разделении развернутым углом на плоскости любая из его частей считается внутренней областью развернутого угла.
Внутренняя область угла – элемент, служащий для второго определения угла.
Углом называют геометрическую фигуру, состоящая из двух несовпадающих лучей, имеющих общее начало и соответствующую внутреннюю область угла.
Данное определение является более строгим, чем предыдущее, так как имеет больше условий. Оба определения не желательно рассматривать отдельно, потому как угол – это геометрическая фигура, преобразованная при помощи двух лучей, выходящих из одной точки. Когда необходимо выполнять действия с углом, то под определением понимают наличие двух лучей с общим началом и внутренней областью.
Определение смежных и вертикальных углов
Два угла называют смежными, если имеется общая сторона, а две другие являются дополнительными полупрямыми или образуют развернутый угол.
На рисунке видно, что смежные углы дополняют друг друга, так как являются продолжением один другого.
Два угла называют вертикальными, если стороны одного являются дополнительными полупрямыми другого или являются продолжениями сторон другого. На рисунке ниже показано изображение вертикальных углов.
При пересечении прямых получается 4 пары смежных и 2 пары вертикальных углов. Ниже показано на рисунке.
Сравнение углов
Статья показывает определения равных и неравных углов. Разберем какой угол считается большим, какой меньшим и другие свойства угла. Две фигуры считаются равными, если при наложении они полностью совпадают. Такое же свойство применимо для сравнения углов.
Даны два угла. Необходимо прийти к выводу, равные эти углы или нет.
Известно, что имеет место наложение вершин двух углов и стороны первого угла с любой другой стороной второго. То есть при полном совпадении при наложении углов стороны заданных углов совместятся полностью, углы равные.
Может быть так, что при наложении стороны могут не совместиться, то углы неравные, меньший из которых состоит из другого, а больший имеет в своем составе полный другой угол. Ниже изображены неравные углы, не совмещенные при наложении.
Развернутые углы являются равными.
Измерение углов
Измерение углов начинается с измерения стороны измеряемого угла и его внутренней области, заполняя которую единичными углами, прикладывают друг к другу. Необходимо посчитать количество уложенных углов, они и предопределяют меру измеряемого угла.
Единица измерения угла может быть выражена любым измеряемым углом. Имеются общепринятые единицы измерения, которые применяют в науке и технике. Они специализируются на других названиях.
Чаще всего используют понятие градус.
Один градус называют углом, который имеет одну сто восьмидесятую часть развернутого угла.
Известно, что количество положенных градусов в угле, это и есть та самая мера угла. Развернутый угол имеет 180 уложенных углов в своем составе. Ниже на рисунке приводятся примеры, где уложение угла идет в 30 раз, то есть одна шестая развернутого, и 90 раз, то есть половина.
Минутой называют одну шестидесятую часть градуса.
Секундой называют одну шестидесятую часть минуты.
Градус содержит 3600 секунд. Минуты обозначают « ‘ », а секунды « » ». Имеет место обозначение:
Градусная мера угла –это число, показывающее количество укладываний градуса в заданном угле.
Исходя из этого, можно сделать вывод, что сумма всех смежных углов равна 180 градусам, потому что они все и составляют развернутый угол.
Кроме градусов, минут и секунд используется еще одна единица измерения. Она называется радианом. Чаще всего ее можно встретить в тригонометрии при обозначении углов многоугольников. Что же называют радианом.
Углом в один радиан называют центральный угол, который имеет длину радиуса окружности равную длине дуги.
Обозначение угла принимается за «рад». То есть запись в 5 радиан сокращенно обозначается как 5 рад. Иногда можно встретить обозначение, имеющее название пи. Радианы не имеют зависимости от длины заданной окружности, так как фигуры имеют некое ограничение при помощи угла и его дугой с центром, находящимся в вершине заданного угла. Они считаются подобными.
Радианы имеют такой же смысл, как и градусы, только разница в их величине. Чтобы это определить, необходимо вычисленную длину дуги центрального угла поделить на длину ее радиуса.
На практике используют перевод градусов в радианы и радианы в градусы для более удобного решения задач. Указанная статья имеет информацию о связи градусной меры с радианной, где можно подробно изучить переводы из градусной в радианную и обратно.
Обозначение углов на чертеже
Для наглядного и удобного изображения дуг, углов используют чертежи. Не всегда можно правильно изобразить и отметить тот или иной угол, дугу или название. Равные углы имеют обозначение в виде одинакового количества дуг, а неравные в виде разного. На чертеже изображено правильное обозначение острых, равных и неравных углов.
Когда необходимо отметить более 3 углов, используются специальные обозначения дуг, например, волнистые или зубчатые. Это не имеет столь важное значение. Ниже приведен рисунок, где показано их обозначение.
Обозначение углов должны быть простыми, чтобы не мешали другим значениям. При решении задачи рекомендовано выделять только необходимые для решения углы, чтобы не загромождать весь чертеж. Это не помешает решению и доказательству, а также придаст эстетичный вид рисунку.
Какая фигура называется углом объясни что такое вершина и стороны угла
Угол — это геометрическая фигура, образованная двумя лучами, выходящими из одной точки, то есть два луча с общим началом называются углом. Лучи, образующие угол, называются сторонами угла, а их общее начало — вершиной угла.
Обозначение углов
Угол обозначается или одной буквой или цифрой, поставленной при вершине угла, например угол A или угол 1, или тремя буквами, из которых одна стоит при его вершине, а две другие при каких-либо точках его сторон. При обозначении угла тремя буквами, буква, стоящая при его вершине, произносится и пишется между двумя другими, например угол AOB. Слово угол в записи заменяют знаком ∠, например ∠1.
Внутренняя и внешняя область
Два луча, исходящие из одной точки, образуют два угла. Для обозначения нужного угла, угол обычно помечается дугой:
Если рассматриваются оба угла, образованные двумя лучами, то они помечаются разным числом дуг, но только в том случае, если углы не равны. Равные углы обозначаются одинаково.
Любой угол делит плоскость на две области. Одна область обычно называется внутренней, а другая внешней. Внутренняя область угла — это часть плоскости, расположенная между сторонами рассматриваемого угла:
Внешняя область угла — это часть плоскости, которая не принадлежит рассматриваемому углу.
Школе NET
Register
Do you already have an account? Login
Login
Don’t you have an account yet? Register
Newsletter
Submit to our newsletter to receive exclusive stories delivered to you inbox!
Суррикат Мими
Билет №1.
Какая фигура называется углом? Объясните, что такое вершина и стороны угла.
Докажите, что углы при основании равнобедренного треугольника равны.
Билет №2.
Что такое градусная мера угла?
Сформулируйте и докажите теорему о биссектрисе равнобедренного треугольника.
Билет №3.
Какие углы называются смежными? Чему равна сумма смежных углов?
2. Сформулируйте и докажите теорему, выражающую первый признак равенства треугольников.
Билет №4.
Какие углы называются вертикальными? Каким свойством обладают вертикальные углы?
2. Сформулируйте и докажите теорему, выражающую второй признак равенства треугольников.
Лучший ответ:
Главный Попко
√1)а)угол-это геометрическая фигура,имеющая начало,но не имеющая конца,состоящая из двух лучей,выходящих из одной прямой.
б)сторона угла-луч(это геометр.фигур.имеющая начало,но не имеющая конца); вершина угла-это место куда сходятся 2 луча.
в)т.к. в р/б треугольнике боковые стороны равны,а против равных сторон лежат равные углы.
√2)а)градус.мера-это мера,в которой измеряется угол.
б)бис.в р/б треугольнике,проведённая к основанию,является медианой и высотой(т.к. она делит верх.угол на двое и основание 2 равн.части,и эта бис. у основания образовывает прямой угол.
√3)а)два угла,у которых одна сторона общая,а две др. являются продолжениями одна другой,назыв.смежными.
б)180°
в)в равных треугл.против равных сторон лежат равные углы и наоборот.
√4)а)2 угла назыв.вертикл,если стороны одного угла явл.продолжениями сторон другого.
б)вертикальные углы равны.
в)если сторона и два прилежащих к ней угла одного треугл. соответственно равны стороне и двум прилежащим к ней углам другого треугл.,то такие треугольники равны.
ура!ура!ура!(очень долго писала,надеюсь помогла).
Какая фигура называется углом, что такое вершина и стороны угла?
«Углом называют фигуру которая образованна всеми точками плоскости, заключёнными между этими лучами (Говоря без предисловий, двум таким лучам соответствуют два угла, так как они делят плоскость на две части. Один из этих углов условно называют внутренним, а другой — внешним. «
Так это выглядит графически:
Обозначаться данная фигура может следующим образом:
Совсем несложно найти угол между катетом и гипотенузой.
Сумма углов в треугольнике равна 180 градусам, один из них равен 90 градусам и если известно значение второго острого угла, нужно от 90 градусов отнять это значение.
если известны величины сторон прямоугольного треугольника, тогда угол можно найти по этим формулам, используя при этом таблицы значений синусов, косинусов и тангенсов.
Но бывает и такое. что под рукой как назло нет этих табличек, тогда угол между катетом и гипотенузой можно просто измерить с помощью транспортира, но если и его нет, тогда
угол в прямоугольном треугольнике между катетом и гипотенузой можно определить с помощью обычной линейки и карандаша
меньший катет удлиняем к размеру большого. соединяем, откладываем на новой гипотенузе длину большего катета.
С вершины прямого угла прикладываем линейку и измеряем расстояние между синими отрезками и между вершиной треугольника и гипотенузой.
Сравнить два угла на глаз невозможно, ведь отличаться они могут совсем на немного и тогда нам будет казаться, что углы равные, хотя на самом деле один больше другого. Поэтому обычно сравнивают углы либо измерением с помощью например транспортира, или наложением если такое возможно.
И тот и другой вариант имеют свою погрешность, но если абсолютная точность не требуется, то они вполне годятся.
При наложении углы просто накладываются друг на друга, чтобы совместились вершина угла и одна сторона обоих углов. Тогда по взаимоположению второй стороны этих углов можно сделать вывод о равенстве или неравенстве углов.
Другой способ. Чертите циркулем окружность. Ставите ножку циркуля в любую точку этой окружности (пусть это точка А), и делаете засечку на окружности. Получаете точку В. Далее, ставите ножку циркуля в точку В и делаете следующую засечку (С) и так далее, пока очередная (шестая) засечка не «придёт» в точку А. Соединяете через одну любые три точки и получаете равносторонний треугольник с углами по 60 °.
Деление угла пополам. Пусть дан угол в вершиной А. Ставите ножку циркуля в вершину угла и проводите дугу, так, чтобы она пересекла обе стороны угла. Обозначаете точки пересечения В и С. Теперь, ставите ножку циркуля последовательно в точки В и С и проводите дуги одинакового радиуса (не обязательно равного АВ и АС), до их пересечения. Точку пересечения этих дуг обозначаете D. Через точки А и D проводите прямую линию. Она является биссектрисой заданного угла), т.е. делит его пополам.
Таким образом, разделив угол 60 ° пополам, получите угол в 30 °, а разделив пополам его, получите угол в 15 °.
Также, это может быть число или буква, которой обозначается его значение в градусах или радианах.
Плоские углы могут быть
Более сложные углы, это те, которые ограничены плоскими углами с общей вершиной и называются многогранными (трехгранными, четырехгранными, пяти-, шести и т.д).
Также это слово может употребляться в переносном смысле