Какие бывают типы регуляторов напряжения в чем их преимущества и недостатки
Типы регуляторов напряжения
Объяснение трех различных типов регуляторов напряжения
Когда требуется стабильное, надежное напряжение, регуляторы напряжения являются неотъемлемым компонентом. Они принимают входное напряжение и создают регулируемое выходное напряжение независимо от входного напряжения либо на фиксированном уровне напряжения, либо на регулируемом уровне напряжения (путем выбора правильных внешних компонентов).
Это автоматическое регулирование уровня выходного напряжения обрабатывается различными методами обратной связи, некоторые из которых так же просты, как стабилитрон, в то время как другие включают сложные топологии обратной связи, которые могут улучшить производительность, надежность, эффективность и добавить другие функции, такие как повышение выходного напряжения выше входного напряжения для регулятор напряжения
Типы регуляторов напряжения
Существует несколько типов регуляторов напряжения, которые варьируются от очень доступных до очень эффективных. Наиболее доступным и часто самым простым типом регулятора напряжения являются линейные регуляторы напряжения.
Линейные регуляторы бывают нескольких типов, очень компактны и часто используются в системах с низким напряжением и низкой мощностью.
Импульсные регуляторы намного эффективнее линейных регуляторов напряжения, но с ними сложнее работать и они более дороги.
Линейные регуляторы
Одним из основных способов регулирования напряжения и обеспечения стабильного напряжения для электроники является использование стандартного 3-контактного линейного стабилизатора напряжения, такого как LM7805, который обеспечивает выходной сигнал 5 Вольт на 1 А при входном напряжении до 36 В ( в зависимости от модели).
Линейные регуляторы работают, регулируя эффективное последовательное сопротивление регулятора на основе напряжения обратной связи, по существу превращаясь в схему делителя напряжения. Это позволяет регулятору выдавать эффективное постоянное напряжение независимо от того, какая нагрузка на него возложена, вплоть до его текущей емкости.
Одним из существенных недостатков линейных регуляторов напряжения является большое минимальное падение напряжения на регуляторе напряжения, которое составляет 2,0 В на стандартном линейном стабилизаторе напряжения LM7805. Это означает, что для получения стабильного 5-вольтного выхода требуется как минимум 7-вольтный вход. Это падение напряжения играет большую роль в мощности, рассеиваемой линейным регулятором, который должен рассеивать не менее 2 Вт, если он выдает нагрузку 1 А (время падения напряжения 2 В 1 А).
Рассеиваемая мощность ухудшается, чем больше разница между входным и выходным напряжением. Так, например, в то время как 7-вольтовый источник, регулируемый на 5 вольт, подающий 1 ампер, будет рассеивать 2 Вт через линейный регулятор, 10-вольтный источник, отрегулированный на 5 вольт, подающий тот же самый ток, будет рассеивать 5 ватт, делая регулятор только 50 % эффективный.
Импульсные регуляторы
Линейные регуляторы являются отличным решением для маломощных и недорогих приложений, где разница напряжений между входом и выходом невелика и не требует большой мощности. Самым большим недостатком линейных регуляторов является то, что они очень неэффективны, и именно здесь включаются переключающие регуляторы.
Когда требуется высокая эффективность или ожидается широкий диапазон входного напряжения, включая входные напряжения ниже желаемого выходного напряжения, переключающий регулятор становится наилучшим вариантом. Импульсные регуляторы напряжения имеют КПД 85% или выше по сравнению с линейными регуляторами напряжения, которые часто ниже 50%.
Импульсные регуляторы обычно требуют дополнительных компонентов по сравнению с линейными регуляторами, и значения компонентов оказывают гораздо большее влияние на общую производительность импульсных регуляторов, чем линейные регуляторы.
Существует также более сложная задача при эффективном использовании регуляторов переключения без ущерба для производительности или поведения остальной части цепи из-за электронного шума, который может генерировать регулятор.
Стабилитроны
Одним из самых простых способов регулирования напряжения является стабилитрон. В то время как линейный регулятор является довольно базовым компонентом с несколькими дополнительными компонентами, необходимыми для работы, и очень малой сложностью конструкции, стабилитрон может обеспечить адекватное регулирование напряжения в некоторых случаях только одним компонентом.
Поскольку стабилитрон шунтирует все дополнительное напряжение, превышающее пороговое значение пробивного напряжения, на землю, его можно использовать в качестве очень простого регулятора напряжения с выходным напряжением, протянутым через выводы стабилитрона.
К сожалению, стабилитроны часто очень ограничены в своей способности управлять мощностью, что ограничивает возможности их использования в качестве регуляторов напряжения только для приложений с очень низким энергопотреблением. При использовании стабилитронов таким способом лучше всего ограничить доступную мощность, которая может протекать через стабилитрон, путем стратегического выбора резистора правильного размера.
Типы стабилизаторов напряжения
Нормы качества сетевого напряжения
Конечно, в зависимости от страны, стандарты могут отличаться. Например, в США в розетках не 220 вольт, а 110. Но производимая в каждой конкретной стране техника должна соответствовать принятым в ней стандартам.
И она соответствует. Но есть другая проблема. Далеко не всегда параметры сети находятся в полном соответствии с заданным стандартом.
Вот возьмём нашу прекрасную страну. Какие объективные причины препятствуют соблюдению ГОСТа в области электропитания?
Прежде всего, это техническое несовершенство отечественных электросетей, старые трансформаторные подстанции, рост нагрузки на электросети со стороны населения отдельных коттеджных поселков, дачных районов. Да, в отдельно взятой Москве вполне благополучная обстановка с соблюдением ГОСТа 13109-97. Но давайте отъедем дальше. Даже совсем недалеко, за МКАД, в какой-нибудь поселок Раменского района (наша комапания «Стабы.ру» часто там устанавливает стабилизаторы).
Что мы там увидим? Что у многих жителей стоят стабилизаторы напряжения. Причем не на отопительные котлы, для которых стабилизатор является обязательным атрибутом даже в крупных городах. Установлены стабилизаторы на весь дом. Совсем не от хорошей жизни. Просто интенсивная застройка Подмосковья увеличивает нагрузку на местные электросети.
Где-то успевают менять трансформаторы, а где-то они стоят еще с прошлого века. В этом случае напряжение просаживается и ни о каком соблюдении стандарта уже речь не идёт.
И низкое и высокое напряжение негативно влияет на работу электроприборов (стиральные машины, компьютеры, холодильники, микроволновые печи, насосы, электрокотлы, системы охраны и т.п.).
Избавиться от возможных финансовых потерь из-за поломки электрооборудования, можно с помощью включения стабилизаторов напряжения. Они подключаются последовательно между токоприемником, бытовым прибором и электросетью.
Требования к регулируемым стабилизаторам определяются тем же ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения».
Какие бывают стабилизаторы напряжения?
Стабилизаторы напряжения (СН) по принципу действия делят на: ступенчатые, феррорезонансные, электромеханические, гибридные, стабилизаторы с подмагничиванием трансформатора, системы с двойным преобразованием энергии и высокочастотные транзисторные регуляторы. Причем системы с двойным преобразованием энергии и высокочастотные транзисторные регуляторы не доступны пока пользователям и пока находятся в стадии разработки, а стабилизаторы с подмагничиванием трансформатора ограничены по диапазону регулировки и имеют значительный коэффициент несинусоидальности, что не делает их конкурентоспособными другим типам стабилизаторов напряжения.
Релейные стабилизаторы
Релейный тип стабилизаторов напряжения можно назвать самым распространенным в России благодаря низкой стоимости. Релейные СН относятся к классу автотрансформаторных устройств со ступенчатым регулированием напряжения путем переключения отводов (обмоток) силового автотрансформатора с помощью электромеханических силовых реле. То есть повышение/понижение напряжения на выходе СН идет параллельно его повышению/понижению на входе стабилизатора.
Основа конструкции релейного устройства – наличие особой вольтодобавочной катушки, которая несколько сходна в работе с трансформатором. Однако при этом принцип ее работы связан не с трансформированием, а просто с добавлением недостающего вольтажа. От данной катушки идут выходы, которые при помощи наличия реле поочередно подсоединяются к выходу устройства. При этом тип подключения полностью зависит от вольтажа, а управляет всем данным механизмом особая плата управления. Она и катушка составляют основные части стабилизационного устройства релейного типа. Все остальные комплектующие относятся к информационным и вспомогательным обслуживающим деталям.
Принцип работы релейного стабилизатора
Рабочий диапазон напряжений
Рассмотрим схему переключения обмоток ступенчатого СН на примере одного из классических релейных стабилизаторов.
Из вышесказанного можно также сделать вывод, что релейный стабилизатор не может постоянно на выходе показывать напряжение ровно 220В!
О достоинствах релейных стабилизаторов
О недостатках релейных стабилизаторов
Главным же недостатком релейного (как и электронного) СН можно назвать как раз ступенчатый способ стабилизации.
Если использовать данный стабилизатор, например, на всю квартиру или коттедж, то, при точности выходного напряжения (U) более 2%, в светильниках с лампами накаливания (к которым относятся и галогенные лампы) будет заметно резкое изменение накала лампы (освещенности) при переключениях обмоток СН (то есть при отработке просадок и всплесков напряжения).
К недостаткам же стоит отнести и то, что чем более точен стабилизатор на выходе, тем меньше скорость стабилизации напряжения, так как чем точнее стабилизатор, тем больше в нем обмоток трансформатора, следовательно большее количество ступеней (реле) нужно будет переключить прежде, чем всплеск напряжения будет отработан.
Релейный стабилизатор напряжения рекомендуется выбирать с запасом по мощности 20-30%, особенно это актуально для дешевых марок, у которых номинальная мощность часто бывает завышена.
Большинство продаваемых в России СН релейного типа производятся в Китае, хотя некоторые и утверждают, что их стабилизаторы произведены в Европе или Прибалтике. Но при этом продавцы не могут ответить на вопрос, почему такие «европейские» стабилизаторы стоят дешевле, чем произведенные на крупных китайских предприятиях.
Феррорезонансные стабилизаторы
В СССР первые феррорезонансные модели появились в 60-х годах. Это был первый тип советских стабилизаторов напряжения. Необходимость в его появлениии была связана с началом массового производства различной бытовой техники и обеспечении её качественного электропитания. Основными элементами феррорезонансных стабилизаторов являлись: трансформатор, конденсатор, входной и фильтрующий дроссель. Мощность таких устройств была невелика(обычно 200-300 ватт), т.к. основными потребителями были маломощные телевизоры, магнитофоны и радиоаппаратура.
Используют феррорезонансные стабилизаторы в своей работе эффект феррорезонанса напряжения, возникающего в контуре трансформатор-конденсатор. Феррорезонансные устройства довольно быстро реагируют на кратковременные изменения U, имеют высокую надежность, работают устойчиво в широком диапазоне входных напряжений и не требуют особого контроля. Особенность вольтамперной характеристики насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов обеспечивалась стабилизация U при изменении входного U в достаточно широких пределах, но незначительное изменение частоты питающей сети очень сильно влияло на характеристики устройств.
Ступенчатые стабилизаторы
Стабилизаторы со ступенчатым регулированием работают с использованием автоматической коммутации обмоток автотрансформатора посредством силовых реле, тиристоров или симисторов. Они дешевы, имеют высокое быстродействие при отсутствии синусоидальных искажений, работают на «холостом ходу» и отличаются значительным КПД. Поэтому несмотря на некоторые ограничения точности стабилизации из-за ступенчатого изменения напряжения на входе сегодня наиболее востребованы и применяются для стабилизации напряжения и защиты техники почти повсеместно (частные хозяйства, квартиры, офисы и т.д.).
Отсутствие механических деталей и механического износа позволяют продлить срок службы стабилизатора, что позволяет давать на изделия большую гарантию. Так, например, на марку Энерготех даётся гарантия 5 лет. В целом, плюсы и минусы релейных и электронных ступенчатых СН совпадают.
Электромеханические стабилизаторы
По другому их еще называют сероприводные стабилизаторы (электромеханические следящие системы). Они используют автотрансформатор, включенный в первичную обмотку вольтодобавочного трансформатора, и следящий блок из электродвигателя и системы управлением электродвигателя.
Однофазные электромеханические стабилизаторы мощностью до 3000ВА (вольтампер) имеют, как правило, один автотрансформатор и один щеточный узел (двухщеточные СН не нашли широкого применения из-за более высокой цены), модели мощностью 5-10кВА обычно еще оснащаются и вольтодобавочным трансформатором. Мощные однофазные электромеханические СН могут быть с двумя или тремя трансформаторами.
Трехфазный стабилизатор напряжения конструктивно представляет собой три однофазных стабилизатора с общей защитной электроникой.
Самым главным преимуществом устройств электромеханического типа является плавность регулировки U и высокая точность стабилизации при относительно низкой стоимости. Эти СН имеют высокую точность регулировки при отсутствии помех, могут работать при больших перегрузках, недоступных другим СН, и имеют широкий диапазон возможной регулировки. К недостаткам электромеханических следящих систем относят ограниченный ресурс службы, довольно низкое быстродействие и ограниченность использования из-за открытого скользящего электрического контакта.
Примеры торговых марок электромеханических стабилизаторов: RUCELF (Китай), VoTo (Китай), Schuntermann (Германия), NiCOM (США), ORTEA (Италия).
Инверторные стабилизаторы
Гибридные стабилизаторы
Подробнее о процессе производства гибридных стабилизаторов Вольт Инжиниринг можно прочитать в статье.
Устаревшие типы стабилизаторы
В советское время выпускались и другие типы стабилизаторов, которые впоследствии видоизменились. СН, как правило, выпускались с линейным сопротивлением в виде выделенного ненасыщенного дросселя, а также с магнитным шунтом. Стабилизаторы с магнитным шунтом, например, отличались от регуляторов переменного напряжения сети с линейным дросселем тем, что в них в качестве линейного сопротивления используется индуктивность рассеяния магнитного потока на пути от первичной ко вторичной обмотке.
Эта индуктивность усиливается при помощи внешнего или внутреннего магнитного шунта, создающего благоприятные условия для замыкания через него магнитного потока рассеяния, минуя вторичную обмотку автотрансформатора. СН этого типа, так же как и устройства с линейным сопротивлением, имеют те же элементы схемы — нелинейное звено в виде параллельного феррорезонансного контура, компенсационную обмотку и фильтр высших гармонических составляющих.
Какие бывают типы стабилизаторов напряжения?
На производстве и в быту широко применяется электрическая энергия. Переменным током питают системы освещение, приводы механизмов электрических приборов, его подают на сетевой разъем электронных устройств. Сбытовые организации не всегда обеспечивают надлежащее качество электрических сетей, что проявляется, в частности, в колебаниях сетевого напряжения. Это неприятное явление характерно для:
Колебания отрицательно влияют на качество функционирования техники, снижают ее надежность. Застраховать себя от этого явления можно применением стабилизатора, который включают между сетью и нагрузкой, рисунок 1.
Рисунок 1. Схема включения стабилизатора
Типы стабилизаторов напряжения по принципу работы
Стабилизацию можно выполняться различными способами. Принципы стабилизации, использованные разработчиком, определяют типы стабилизаторов напряжения.
Релейные
Релейные стабилизаторы, часто называемые ступенчатыми, представляют собой силовой трансформатор с несколькими выходами вторичной обмотки, один из которых принимается за общий. Датчик отслеживает состояние сети, при выходе за пределы разрешенных допусков осуществляет автоматическую регулировку выходного напряжения с помощью переключения реле. При срабатывании отдельных силовых реле происходит переключение обмоток с подключением нагрузки на тот вывод, напряжение на котором минимально отличается от заданного.
Конструктивная простота релейных стабилизаторов, неплохая точность регулирования, невысокая стоимость, высокая надежность обеспечивают им высокую популярность.
Недостатки:
Электромеханические (сервоприводные)
Электромеханические или сервоприводные стабилизаторы устраняют один из основных недостатков стабилизаторов с механическими реле: обеспечение только ступенчатой регулировки выходного напряжения. Принцип их действия основан на изменении коэффициента трансформации. Оно реализовано с помощью щетки, соединенной с электродом выходных клемм. Щетку перемещает по вторичной обмотке тороидального трансформатора вспомогательный электродвигатель, рисунок 2.
Рисунок 2. Конструктивные особенности сервоприводного регулятора
Для электромеханических стабилизаторов характерны большой диапазон регулировки, небольшие габариты, малая стоимость.
Основные недостатки: низкое быстродействие, хорошо слышимый ночью шум работающего электродвигателя.
Инверторные (бесступенчатые, бестрансформаторные, IGBT, ШИМ)
Инверторные стабилизаторы реализуют двухступенчатую схему получения выходного напряжения. Сначала переменный входной ток преобразуют в постоянный, а затем из него вновь генерируют переменное напряжение. Автоматическое регулирование происходит на этапе формирования постоянного тока, здесь же реализованы функции ступени стабилизации.
Существует несколько вариантов каскадного преобразования, каждому из которых соответствует подкласс инверторных стабилизаторов. Наибольшее распространение получили ШИМ-устройства и стабилизаторы на IGBT-транзисторах.
Сильные стороны этого оборудования:
При применении надлежащей элементной базы инверторная техника нормально функционирует при отрицательных температурах.
Главный недостаток: плохая перегрузочная способность, в т.ч. кратковременная (не более 25 – 50% на протяжении 1 – 2 с). Последнее заставляет тщательно контролировать выходную мощность устройства при работе на реактивную нагрузку (электродвигатели различного назначения, вентиляторы и т.д.). Кроме того, следует принимать во внимание сложность электрической схемы, что увеличивает риски отказа, и высокую стоимость из-за необходимости применения силовой полупроводниковой элементной базы.
Феррорезонансные
Феррорезонансный стабилизатор — это устройство трансформаторного типа. Его характерная особенность — применение обмоток трансформатора, одетых на магнитопроводы разного поперечного сечения. Параллельно вторичной обмотке L2 подключен дополнительный конденсатор С, рисунок 3. Его емкость подобрана так, чтобы за счет резонанса обеспечивать постоянное насыщение магнитопровода вторичной обмотки. Отсюда большие изменения входного напряжения не приводят к колебаниям выходного.
Рисунок 3. Схема феррорезонансного стабилизатора
Стабилизатор имеет высокую скорость отработки скачков, обладает повышенной надежностью за счет отсутствия схем переключения, обеспечивает неплохую точность стабилизации.
Отсутствие механически подвижных компонентов позволяет эксплуатировать феррорезонансные стабилизаторы при небольших отрицательных температурах.
Главные недостатки:
Электронные (симисторные, тиристорные)
Так называемые электронные стабилизаторы структурно повторяют устройства на электромагнитных реле, но для ступенчатых переключений обмоток авторансформатора использованы полупроводниковые изделия. Возможно несколько разновидностей таких электронных схем, каждая из которых осуществляет автоматическое переключение коэффициента трансформации. Серийно выпускаются стабилизаторы, в которых функции ключевых элементов ступенчатого регулирования возложены на симисторы и тиристоры.
Тиристор — это полупроводниковая структура с тремя p-n-переходами, в которой выполнена глубокая положительная обратная связь. Ее наличие обеспечивает высокую скорость переключения при работе в ключевой режиме. Симистор образован двумя тиристорами с объединенными управляющими электродами, включенными встречно-параллельно, рисунок 4. За счет возможности пропускания тока этим компонентом в двух направлениях симисторные стабилизаторы демонстрируют повышенный КПД. Это выгодно отличает их от тиристорных стабилизаторов.
Рис. 4. Принципиальная схема простейшего варианта симисторного регулятора
Общие преимущества:
Кроме того, по быстродействию электронные стабилизаторы заметно превосходят свои релейные электромеханические аналоги, т.е. хорошо отрабатывают скачки напряжения.
Недостатки:
Виды стабилизаторов напряжения по классу напряжения
Промышленность выпускает широкую гамму стабилизаторов.
По диапазону выходных напряжений электронное оборудование для однофазных сетей рассчитано на 220 – 240 В (популярна также промежуточная градация 230 В), доступны феррорезонансные стабилизаторы на 110 – 120 В.
Бытовое оборудование для трехфазных электросетей обеспечивает выходное напряжение 380 – 415 В вне зависимости от применяемых схемных решений и отдаваемого тока нагрузки.
Техника промышленного назначения может иметь более высокое выходное напряжение: вплоть до 6 – 10 кВ.
Походы к выбору стабилизатора
Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:
Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.
При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.
При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.
Учитывают эстетические параметры и количество выходных розеток, рисунок 5.
Рис.5. Вариант исполнения однофазного стабилизатора
Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.
Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания.
Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.
Заключение.
Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести выбор конкретной модели устройства с учетом конкретной области применения.
Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.