Какой угол называется внешним углом треугольника докажите что внешний угол треугольника равен
Какой угол называется внешним углом треугольника? Докажите, что внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.
Обсуждение вопроса:
Внешним углом плоского треугольника при данной вершине называется угол, смежный с внутренним углом треугольника при этой вершине. Если внутренний угол при данной вершине треугольника образован двумя сторонами, выходящими из данной вершины, то внешний угол треугольника образован одной стороной, выходящей из данной вершины и продолжением другой стороны, выходящей из той же вершины.
Теорема о внешнем угле треугольника: Внешний угол треугольника равен сумме двух оставшихся углов треугольника, не смежных с этим внешним углом.
Доказательство
Пусть ABC — произвольный треугольник с внешним углом d. Так как углы b и d — смежные, то их сумма равна 180°, то есть угол d = 180° — b. По теореме о сумме углов треугольника, угол b = 180° — (a + c). Из этого следует, что углы a + c = 180 — b. Так как d также равен 180 — b, то угол d = a + c. Что и требовалось доказать.
С другой стороны, если выполняется Теорема о внешнем угле треугольника, тогда справедливы следующая логическая цепь равенств:
Давайте начнем с того, что вспомним как звучит теорема: внешний угол треугольника равен сумме двух углов треугольника не смежных с ним.
Нам задан треугольник ABC, углы треугольника 1, 2 и 3, а 4 — внешний угол при вершине с углов 3.
Угол 3 и угол 4 являются смежными углами (сумма смежных углов равна 180°):
Так же сумма углов треугольника равна 180°:
Внешний угол треугольника
Внешний угол треугольника — это угол, смежный с любым из внутренних углов треугольника.
При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:
Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны.
Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:
Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:
Из этого следует, что
Сократив обе части полученного равенства на одно и тоже число (∠4), получим:
Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.
Сумма внешних углов
Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°
Рассмотрим треугольник ABC:
Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:
(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°.
Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов: