Карты векторные и растровые в чем различие
AnyGIS
Векторные и растровые карты
Немного теории
Краткое введение, чтобы объяснить сильные и слабые стороны карт из этой подборки. Но для начала немного теории. Изображения на компьютере могут храниться двумя основными способами: в векторном и в растровом форматах.
На практике приводит к тому, что векторные файлы значительно меньше, чем растровые. Они занимают в разы меньше места и быстрее скачиваются.
С другой стороны, растровые изображения не обязаны состоять из одноцветных фигур. За счет этого они порой выглядят более естественными. Менее “рисованными”, что-ли.
Как обстоят дела на практике?
Вы спросите, как всё это относится к картам? Дело в том, что разработчики мобильных навигационных приложений обычно разрешают скачивать именно векторные карты. Среди таких Maps.me, GuruMaps, OsmAnd и многие другие. Все эти векторные карты занимают очень мало места. Более того: для удобства пользователей они даже разделены на части, чтобы можно было скачать лишь какой-то конкретный город или регион. А еще они позволяют делать поиск объектов на карте по их названию. В общем, вполне естественно, что именно этот вариант наиболее прост, быстр и удобен для большинства пользователей.
Однако, некоторым не нравится отрисовка стандартных векторных карт. Что ж, существуют сайты, которые уже сделали более сложную и приятную глазу отрисовку тех же векторных карт, сохранили их в растровый формат и выложили для скачивания. На таких картах часто бывает рельеф местности, изолинии и прочие приятные детализированные текстуры. Просто сравните:
Вы спросите, для чего же такие трудности? Дело в том, что многие карты бывают только растровые. Спутниковые фотографии бывают только растровые. “Отсканированные” советские топокарты или карты ГосГисЦентра тоже только растровые. Некоторые турклубы выкладывают в сеть карты собственного изготовления, новые и детально проработанные. Многие из них тоже растровые.
Иными словами, если ваши потребности ограничиваются “сходить в лес на шашлыки и не заблудится”, то все эти заморочки с растровыми картами вам, скорее всего, окажутлся лишней тратой времени. Просто скачайте векторные карты для своего региона. Например, с помощью приложений Maps.me, GuruMaps или OsmAnd. Карты скачаются быстро и много места не займут.
Выводы
Так для чего я все это писал? А для того, чтобы вы понимали, что на этом сайте собраны именно тяжеловесные растровые карты. И предназначен он прежде всего, для более-менее опытных пользователей, которых не отпугнет необходимость сделать несколько дополнительных (хотя и долгих) операций, чтобы иметь возможность скачивать качественные специализированные карты прямо со своего смартфона.
Какие бывают электронные карты, векторные и растровые карты, свойства и отличия.
Наверняка читающему эти строки знакомы оба типа карт, векторные и растровые, и их изображения. Если отличия элементарных изображений в той и другой технологиях заметны сразу, то при просмотре изображений карт определить, к какому типу относятся электронные карты, не столь просто.
Какие бывают электронные карты, векторные и растровые карты, свойства и отличия.
Внешне векторные и растровые электронные карты могут выглядеть совершенно одинаково. Те же контура и линии, названия объектов и залитые цветом пространства суши и акваторий. Но стоит существенно изменить масштаб изображений, как картина радикально преобразится. На растровой карте появляется размытость линий и прочие дефекты. Обычно возникающие при сканировании изображений и фотографировании цифровой камерой с низким разрешением. А что же происходит при изменении масштаба на векторной карте, отображаемой соответствующей картографической программой?
Во-первых, появляются новые детали иобъекты нанесенные на электронные карты. Которых при мелком масштабе не было, потому что они находятся на другом информационном слое карты. Конечно, все линии и контуры остались. Но, как говорится, и это не все. При наведении курсора на объект всплывает окно с четким названием объекта и его характеристиками. Процесс этот, получивший название идентификации или опознавания объекта, очень важен для навигационного использования карты. Каждый объект векторной карты и его атрибуты имеют определенные коды, на которые соответствующим адекватным образом должна реагировать навигационная система при ее использовании.
На такие электронные карты может размещаться и привязываться к географическим координатам дополнительная информация, которой изначально не было на исходной бумажной карте. Например, о приливах, течениях, портах, прогнозе погоды и так далее. Иными словами, данные, связанные с электронной векторной картой, образуют картографическую и информационную базу данных, существенно расширяющую возможности автоматизации навигации в целом. Только в векторных картах возможна разгрузка карты от изображений некоторых физических объектов, не влияющих на безопасность движения. Благодаря чему карта становится наглядной и хорошо читаемой.
Растровая же карта является в большой степени просто «картинкой». Безусловно, полезной для наблюдения окружающей обстановки, но этим все ее достоинства и возможности исчерпываются. Диапазон ее масштабирования очень узок. Конечно, растровую карту можно использовать для навигации, пометив на ней текущее местоположение. Но ряд важных навигационных задач, таких например как выработка предупреждений при приближении к опасностям, решить в системах, использующих растровую карту невозможно. Затруднена стыковка растровых карт разных масштабов и преобразование проекций и так далее. Им присущи существенные ограничения по настройке отображения на экране. Так, в них невозможно изменить информационную нагрузку карты и получить приемлемую с эргономической точки зрения дневную и вечернюю палитру цветов.
Векторная карта с изменением масштаба в широких пределах позволяет реализовать динамическую электронную навигацию с выдачей пользователю многих текущих автоматических предупреждений, например, при подходе к опасности или достижении пункта назначения. В системах с векторными картами имеется уникальная функция предупреждения судоводителя об опасном курсе и вычислении безопасных курсовых секторов. Именно благодаря широким функциональным возможностям векторных карт в настоящее время все современные навигационные системы используют только их. За новые возможности векторных электронных карт приходится расплачиваться сложностью логической структуры их данных и возросшей трудоемкостью создания векторных карт.
Если получение растровой карты путем ее сканирования доступно массовому пользователю, то создание векторных карт осуществляется профессионалами: картографами, гидрографами и программистами. Поскольку первым историческим носителем в недалеком прошлом всех картографических данных являлись бумажные карты, то электронные карты создаются, как правило, на их основе как электронные версии. Но это не электронные копии бумажных карт, поскольку в электронные карты включается дополнительная информация из разных источников. При создании электронных карт используются сканирование и оцифровка бумажных карт с последующей полуавтоматической обработкой.
В связи с высокой трудоемкостью производства электронных карт, создание коллекции карт на всю сухопутную территорию и Мирового океана пока далеко от завершения. В качестве примера рассмотрим элементы технологии создания морских электронных карт компании С-МАР. Исходный фрагмент морской растровой карты приведен ниже, там показан первый этап процесса, когда скопированы лишь береговая черта и линии рекомендованных путей.
Затем создаются индивидуальные слои для других объектов, например для буев и отметок глубин. Выделяется отдельный слой для контуров глубин (изобат), непрерывные контуры глубин заливаются цветным оттенком. Вводится и привязывается к объектам текстовая информация, например характеристики средств навигационного оборудования.
Специальный слой создается для портовой информации, другой слой для информации о приливах. В итоге получается окончательная карта, в черно-белом цвете представленная на рисунке ниже.
Надо отметить, что С-МАР поддерживает свою коллекцию электронных карт регулярной корректурой, которая без дополнительной оплаты поставляется всем подписчикам по различным каналам связи в любое время суток.
По материалам книги Все о GPS-навигаторах.
Найман В.С., Самойлов А.Е., Ильин Н.Р., Шейнис А.И.
Евгений Куршев
Erelen Laiquendi
Векторные и растровые карты
Точки над i для тех, кто не очень понимает или искренне заблуждается. Всё достаточно банально, никаких откровений.
С понятием векторной графики предлагаю ознакомиться самостоятельно. Совсем кратко: растровая графика — это когда у нас в файле записаны цвета каждой точки на картинке, а векторная — это когда у нас записано описание: «в таких-то координатах у нас синий круг радиуса 20 с красной каймой толщины 2, а из таких координат в такие идёт зелёная пунктирная линия». Далее речь пойдёт не о векторной графике в целом, а только о картах, в которых обычно применяются только два с половиной примитива: точка и ломаная (замкнутая и нет).
Терминология
С одной стороны, все современные карты изначально векторные (разумеется, к Генштабу и прочим анахронизмам это не относится) т.к. готовятся в современном цифровом мире, где рисовать карту как окончательную растровую картинку никому уже не придёт в голову (её будет крайне проблематично модифицировать). С другой, финально на экране компьютера/телефона любая карта является растром т.к. экраны на всех этих устройствах растровые (кто слышал о существовании векторных экранов — молодцы, возьмите пряник, но сейчас это к делу не относится).
Так что деление на векторные и растровые традиционно проводят по тому, в какой момент карта растеризуется (преобразуется из вектора в растр): если на пользовательское устройство загружается растр и устройство тупо его рисует на экране as is — это растровая карта. Если на пользовательское устройство загружаются векторные данные и растеризация выполняется уже силами пользовательского устройства в момент отображения карты — это векторная карта.
Далее термины «векторная / растровая карта» следует понимать именно в соответствии с таким делением.
Кто хочет доказывать, что OSM (или кто другой) всегда векторный потому что он изначально векторный — вам зачёт по софистике, пряника не будет.
Спутниковые снимки, как вы понимаете, растровые изначально и другими не бывают.
Преимущества
Недостатки — строго наоборот:
Историческое развитие
Все карты, которые начинали свою жизнь в Вебе изначально поставлялись пользователям растровыми т.к. расретизация на стороне пользователя прямо в браузере была технически невозможна (ну или неоправданно трудно реализуема). Таковы OSM, Я.Карты, Google Maps. Пользуясь последними достижениями веб-стандартов, некоторые из них смогли стать векторными даже в Вебе — в первую очередь это Google Maps, плюс не так давно стала развиваться векторная доставка OSM: то, что вы видите на openstreetmap.org — разумеется, ещё растр, а векторное представление можете пощупать, например, на openmaptiles.org
С некоторыми картами, которые шли в комплекте с отображающей их оболочкой, пользователи изначально знакомы как с векторными: таковы, например, карты Navitel и 2GIS (в те времена, когда это была только программа под Windows). Все эти карты, когда стали выходить в Веб, вынуждены были обзавестись server-side растеризацией (и то, что вы видите на 2gis.ru — это уже растровая карта).
Тайлы
В вебе растровые карты принято доставлять пользователю тайликами — небольшими квадратными картинками (чаще всего 256×256 пикселей). Этот формат подхватили все, под его отображение и работу с ним сделано много библиотек. Только благодаря этому мы можем цеплять к Locus`у много разных карт. С векторными картами так никогда не будет.
Векторные карты раньше всегда поставлялись «кусками территории» (город, область, страна) в одном файле. Но в современном мире перманентного онлайна назрела потребность поставлять карту пользователю очень маленькими кусками (зачем ему грузить всю область, если он только два ближайших квартала на экране телефона намерен пролистать?) и стали появляться векторные тайлы. Форматы у всех свои, отображение возможно только в родном софте. Повторю ещё раз, появление альтернативных программ для отображения векторных Яндекс.Карт / Google Maps и всех прочих крайне маловероятно.
Так кто векторный, а кто растровый?
Важно понимать, что в OSM очень много данных. Обычно ни в один формат доставки векторного OSM пользователю не упаковывают всё, что есть в OSM. Для LoMaps и для OpenAndroMaps набор упаковываемых в файл OSM-тегов различен (но у обоих представлено всё основное — разница в мелочах). Далее, не всё, что упаковано в файл, вы увидите на экране — это будет зависеть от используемой вами визуальной темы (что позволяет выбирать тему по вкусу / под конкретную задачу). Ну а все растровые представления OSM также показывают разный набор объектов по разным правилам — и именно тем, а не использованными цветами, в первую очередь и отличаются.
2GIS, Bing, Apple Maps и прочие-прочие-прочие — растровые в вебе и векторные в родном мобильном приложении.
Ах, да, ещё Garmin. Родные карты и тот OSM, который многие берут c GIS-Lab (или с прочих сайтов, берущих из этого первоисточника) — это векторные карты. Листая их на Garmin`е, каждый может проникнуться ресурсоёмкостью растеризации на пользовательском устройстве 😉 А вот, что пользователи готовят сами и заливают в формате jnx — это растр. То, что заливается в kml, несмотря на неспешность работы на устройстве — тоже растр.
GIS-LAB
Географические информационные системы и дистанционное зондирование
Введение в геоинформационные системы
Векторные, растровые данные
Теоретическая часть
Точность соответствия границ векторного объекта (как в прочем и растрового) границам объекта в реальном мире зависит от количества узлов, которыми этот объект представлен. Круг может быть представлен 10 узлами, а может быть 1000, ни в том не в другом случае реальным кругом он не станет, но во во втором, формально будет обладать большим с ним сходством на более крупных масштабах. Однако при определенных масштабах отображения фигуры будут неразличимы, поэтому при создании картографической продукции важно соотносить масштаб планируемой выходной продукции и масштаб (реальную детальность) используемых векторных и растровых данных. Подробнее о переводе растровых данных в векторные рассказывается в главе посвященной созданию векторных данных (глава 19).
Примером векторных данных является оцифрованная (векторизованная) карта.
Сравнение растровой и векторной модели данных, плюсы и минусы.
Свойство/Модель данных
Растровая
Векторная
Избыточность (объем данных)
Передача непрерывных свойств
Передача дискретных объектов
Практическая часть
В практической части этой главы Вы научитесь:
Упражнение 1. Загрузка и отображение векторных и растровых данных, элементарные составляющие этих типов данных.
Попробуйте сильно увеличить участок слоя. Как можно видеть, даже на очень большом увеличении, пикселизации векторного слоя не происходит.