Развитие акб что это
Эволюция аккумуляторов: от эбонита к графену
Сегодня мы отправимся в увлекательную историю развития аккумуляторов, батарей и элементов питания.
Человечество никогда не стояло на месте. С древних времен наших предков интересовал целый спектр всевозможных физических и химических явлений. Ученые постоянно открывали что-то новое. Такое ноу-хау, как правило, сперва напрочь отрицалось наукой, затем о нем забывали, а спустя несколько десятилетий, уже забытого всеми ученого восхваляли и называли «человеком, который изменил мир». Наверняка вы читаете эти строки с устройства, работающего от розетки или имеющего в своем распоряжении один из важнейших элементов – аккумулятор. И если бы 2 700 лет назад древнегреческий философ Фалес не обратил внимание на взаимодействие шерсти и янтаря, если бы в 1600 году не был введен термин электричество, а в 1800 Аллесандро Вольта не заинтересовался пластинами из цинка и меди, возможно современный мир был намного скучнее.
С чего все началось
Наука средневековья – весьма спорное и запутанное явление. Тем не менее, именно существование целого ряда схоластических теорий породило такое понятие, как научно-технический прогресс. До появления первых аккумуляторов пройдет еще более 2,5 тысяч лет, а пока в солнечной Греции дочь философа Фалеса безуспешно пытается очистить янтарное веретено от мелких частичек ворса, ниток и пыли. Как оказалось, смахнуть их не так-то просто.
Во время правления английской королевы Елизаветы I (1533 – 1603) ее лейб-медик Вильям Гильберт Колчестерский всерьез заинтересовался устройством компаса, магнитами, янтарем и прочими драгоценными камнями, которые после натирания мехом притягивали к себе мелкие частички пергамента. Становилось понятным, что несмотря на определенную схожесть, магнетизм и электричество (термин, введенный самим Гильбертом) имеют совершенно разную природу. Магнит способен притягивать исключительно железо, в то время как электричество, вызванное трением, способно к притяжению частичек неметалического происхождения.
Понятие «притяжение» в средневековье относили к категории «магнитов». Все дополняющие друг-друга явления, вроде ветра и мельницы, солнца и тепла, мужчины и женщины относили к магнитам. Ненависти собак и кошек, друзей и врагов, льда и огня приписывали категорию «феамидов», а в магнетизме это понятие подтверждалось северным и южным полюсами магнита. С появлением электричества «магниты» и «феамиды» станут знакомы по маркировкам «плюс» и «минус», которые можно найти на любом аккумуляторе.
В последующих опытах бургомистра Отто Фон Герике в качестве источника электричества использовался шар из серы. Во время вращения его придерживали руками, а скапливающийся электрический заряд передавался металлическому бруску, который в последствии назовут «лейденской банкой» – главный атрибут престижной средневековой лаборатории, который и стал прообразом современного аккумулятора.
После введения понятия электричество в 1600 году и вплоть до начала XIX века по Европе прокатилась буря опытов, связанных с изучением материалов, способных вызывать так называемый «универсальный временный магнетизм». Тем временем во Франции проводил свои эксперимент ученый, имя которого навсегда осталось нераздельно связанным с любым электрическим прибором.
Великий Вольт
Желая понять природу электричества и в прямом смысле слова «почувствовать его вкус», Алессандро Вольта экспериментировал с монетами, изготовленными из разных металлов. Положив одну из них на язык, а другую под, и соединив их проволокой, Вольта отмечал присутствие характерного кисловатого привкуса. Так острота вкусовых рецепторов человека привела к открытию гальванического электричества, явления, которое еще в середине XVIII века описывал итальянский врач, анатом и физик Луиджи Гальвани, проводя опыты по препарированию лягушек.
Следующим шагом стало конструирование первой электрической батареи, принцип работы которой заключался в погружении медных и цинковых пластин, соединенных последовательно, в раствор кислоты. Изобретение первого химического источника тока, полученного в лабораторных условиях, принято датировать 1798 годом, а его автором стал Аллесандро Вольта.
В течение последующих пяти лет в области исследования гальванических батарей начнется настоящий ажиотаж. 1801 год ознаменовался появлением кратковременного источника питания. Проводя опыты, Готеро (франц. физик), используя воду, платиновые электроды и ток, доказал, что даже после прекращения подачи тока, электроды продолжают излучать электричество. Два года спустя, немецкий химик Иоганн Риттер, заменив платиновые электроды на медные и сформировав из них цепочку пластин, переложенных кусками сукна, сконструировал первый вторичный элемент питания – иными словами, первую аккумуляторную батарею, способную сперва накапливать заряд, а потом постепенного его отдавать без участия «гальванической подпитки».
Пятьдесят медных кружков, смоченной в соленом растворе сукно и вольтов столб положили начало эры аккумуляторов с возможностью многократного цикла заряд-разряд. Появляется новая наука – электрохимия. Начатые в 1854 году немецким врачом Вильгельмом Зингстеденом опыты по использованию свинцовых электродов и их поведению в серной кислоте, спустя пять лет вылились в знаменательное открытие французского инженера Гастона Планте. В 1859 году Планте проводил исследования с листовым свинцом, свернутым в трубочку и разделенным полосами сукна. При погружении в подкисленную воду и под действием тока, свинцовые пластины покрывались активным действующим слоем. Многократное пропускание тока приводило к постепенному росту емкости первой свинцово-кислотной батареи, но рутинное осуществление этого трудоемкого процесса (на изготовление требовалось около 500 часов) приводило к росту конечной стоимости аккумулятора. Более того, потенциальный заряд аккумулятора был сравнительно невелик.
Наследие Зингстедена и Планте будет усовершенствовано через 23 года ученным Камиллом Фором, пересмотревшим процесс изготовления используемых в аккумуляторе пластин. Ускорить формирование активного слоя стало возможным благодаря покрытию пластин окислами свинца. Под действием тока вещество превращалось в перекись, а полученные окислы приобретали пористое строение, способствующее аккумулированию газов на электродах.
Параллельно с разработкой и совершенствованием свинцово-кислотных батарей велась работа и над построением «влажных» элементов Лекланше и их преемников угольно-цинковых аккумуляторов, предложенных в 1888 году Карлом Гасснером и использующихся вплоть до сегодняшнего дня.
В течение длительного периода времени аккумуляторы, электрохимия и все, что было связано с использованием кислых сред, пластин и гальванического электричества будоражило умы исключительно ограниченного круга – ученых, физиков, химиков и врачей. Ситуация кардинально изменилась с появлением в 1827 году динамо-машины – первого электрического генератора постоянного тока. Эволюция генераторов, в свою очередь, подталкивала развитие аккумуляторов и батарей. Узкопрофильные опыты Вольта наконец начали получать промышленное применение.
Промышленная эра аккумуляторов
В 1896 году на территории США, в штате Колумбия открывается компания National Carbon Company (NCC). NCC становится первым предприятием специализацией которого становится серийное производство сухих элементов и батарей. В последующие сто лет Национальную Угольную компанию ждет две стадии ребрендинга: сперва NCC станет Eveready, а сегодня мы знаем ее под именем Energizer.
Предложенный Фором метод заполнения пластин в течение продолжительного времени будет являться основой для построения практически любого типа аккумулятора. В поисках альтернативы морально устаревшему (еще по меркам конца XIX века) свинцово-кислотному аккумулятору и попытках решить две основных проблемы этого некогда революционного источника питания (огромный размер и малоэффективная емкость), в 1901 году легендарный изобретатель Томас Эдисон и Вальдмар Юнгнер одновременно патентуют несвинцовый тип батарей: никель-кадмиевых и никель-железных.
Батарея Юнгнера состояла из положительной пластины, изготовленной из никеля. В качестве отрицательной использовался лист кадмия. Значительное повышение емкости, многократное снижение веса и неприхотливость к регулярности подзарядки не смогли выдержать практического применения в связи с дороговизной процесса изготовления никель-кадмиемых аккумуляторов. Достойной заменой стал предложенный Эдисоном никель-железный элемент, который получил имя щелочного аккумулятора.
Развитие эры электричества, появление мощных промышленных генераторов, трансформаторов и глобальная электрификация приводит к резкому росту популярности портативных элементов питания. Щелочные батареи начинают использовать в корабле- и машиностроении, в транспорте и на электростанциях. На улицах появляются первые электромобили, а конструкторы уже успели сформировать принципы построения аккумуляторных батарей с различным вольтажом.
В поисках идеального корпуса
Опыты с электричеством и попытки построения первых батарей нераздельно были связаны с использованием кислоты или кислой водной среды. Любая жидкость для успешного проведения эксперимента требует соответствующий сосуд, а сбор аккумулятора – свой собственный корпус.
В течение продолжительного времени корпус аккумуляторов изготавливался из дерева. Увы, реакции, происходящие в моменты окисления электродов, и кислотная среда батарей приводили к быстрому разрушению органической оболочки. Дерево заменяют на эбонит – каучук с большим содержанием серы, обладающий высокими электроизоляционными свойствами.
Общепринятым стандартом, использующимся при построении составных аккумуляторов начала XX века, было формирование батареи из нескольких элементов, рабочее напряжение которого составляло 2,2 вольта. Первые «пальчиковые батареи» появились еще в далеком 1907 году. С тех пор внешне они мало в чем изменились. Аккумулятор с напряжением в 6 вольт (три элемента по 2,2 В) оставался эталонным при производстве автомобилей вплоть до начала 50-х годов. Элементы на 12 и 24 Вольта имели более узкую специализацию. В первой половине прошлого века об эстетике в машиностроении никто не задумывался, поэтому любой аккумулятор выглядел весьма неряшливо. Эбонитовый корпус с напичканными элементами и грубыми торчащими перемычками намертво заливался мастикой.
Изобретение немецких ученых Шлехта и Аккермана и демонстрация в 1932 году процесса изготовления прессованных пластин для аккумуляторов не могло не повлиять на внешний вид батарей. В 1941 году в производство корпусов вмешивается австрийская компания Baren, проводившая серию экспериментов по разработке синтетических материалов. Через шесть лет француз Нойман предлагает конструкцию герметичного никель-кадмиевого аккумулятора. Параллельно с этим вся промышленность переходит на батареи с напряжением в 12 вольт, а синтетически полученный американской компанией Johnson Controls полипропилен становится основой для изготовления корпуса любых аккумуляторов. Они стали легче, практичнее, перестали бояться ударов и строгих ограничений при подзарядке.
Настоящее и обозримое будущее
Дальнейшее развитие индустрии аккумуляторных батарей движется настолько стремительно, что проследить за той чередой открытий, которые пришлись на последние пятьдесят лет практически невозможно. На сегодняшний день существует более 30 разновидностей аккумуляторов при построении которых используются два различных электрода, чем и определяется их название: никель-цинковые, литий-титанатные, цинк-хлорные. Среди этого обилия в быту мы сталкиваемся лишь с несколькими.
Причина, по которой мобильные устройства начали свою стремительную эволюцию лишь с начала 90-х годов XX века и за последние 35 лет превратились из громоздких и неповоротливых «чемоданов» в ультракомпактные плоские коробочки, кроется именно в элементах питания.
В 1991 году компания Sony выпускает первый литий-ионный аккумулятор. Этот тип портативных батарей пришел на смену некогда широко использовавшимся никель-кадмиевым (Ni-Cd) и никель-металлгидридным (Ni-MH), изобретенных еще в начале прошлого века.
Литий-ионные аккумуляторы имеют целый ряд преимуществ: они заряжаются на порядок быстрее никелевых, имеют более продолжительный срок эксплуатации и большой запас емкости. Li-ion-аккумуляторы получили широкое распространение в сфере портативной электроники, а предложенные инженерами решения позволили не только значительно увеличить максимальные токи разряда, сделавшие возможным использование этого типа аккумуляторов и в среде мощного оборудования, но и обеспечить внушительный рост емкости.
Несмотря на то, что сегодня мы ощущаем некое отсутствие прорыва в области портативных аккумуляторов, вынуждены ежедневно подзаряжать мобильные устройства и жить в режиме «от розетки к розетке», на сложившую ситуацию можно посмотреть и с более положительной стороны.
Одним из главных двигателей прогресса всей индустрии аккумуляторов стали попытки построения электротранспорта в начале позапрошлого столетия. Не стоит забывать, что электромобиль создан значительно раньше двигателя внутреннего сгорания. Внушительные по размеру тяжеловесные свинцово-кислотные батареи продолжают обеспечивать работу троллейбусов, трамваев, электропогрузчиков и тягачей. Бытовые инструменты с никель-кадмиевых элементов постепенно переходят на литий-ионные и литий-полимерные.
Прорыв в сфере использования литиевых аккумуляторов осуществила и компания Tesla, запустившая производство собственной линейки электроавтомобилей (читайте в статье «Революционер индустрии. История компании Tesla»). В конце апреля 2015 года Tesla представила и аккумуляторы для дома – решение для обеспечения автономности за счет получения энергии через солнечные панели. О целесообразности и эффективности данного решения мы поговорим в следующей статье, а пока нам остается надеяться на скорейшее развитие графеновых аккумуляторов. Аккумуляторов, которые уже сегодня называют «убийцами литий-ионного чуда», способных за 8 минут подарить владельцу автомобиля 1000 километров пробега. Увы, эта страница истории пишется в настоящее время. Но долгожданный технологический прорыв близок как никогда.
Управление продажами
Эксперт по продажам в странах СНГ и Европы
Написать автору
Когда речь заходит об организации и управлении продажами в торговле, то в большинстве случаев все сводится к разработке построении эффективной системы мотивации торговых представителей, которая в итоге состоит из 4-х метрик: план продаж, АКБ, спецзадачи, дебиторка. Когда речь заходит о построении управляемой системы продаж, то все сводится к GPS контролю торговых представителей на маршруте и 10 шагам визита в розницу. Это классическая система дистрибуции.
В системе КПД, когда речь заходит об управлении ростом продаж, то мы составляем KPI матрицу работы дистрибуции (см. ниже таблицу) и фокусируем систему менеджмента на системную работу с торговыми точками (заказы, оплаты, мерчендайзинсистемг). Мы меряем не столько сколько торговых представителей работает в системе, а сколько торговых точек работает в системе. Понимаете разницу?
Золотое правило управления продажами в дистрибуции: торговые представители, супервайзеры, руководители отдела продаж приходят и уходят, но фундаментальной основой для дистрибьюторской компании является системная работа с торговыми точками. Это ключевой актив компании.
KPI матрица в системе КПД позволяет: оценить в какой системе координат работает менеджмент компании сегодня, увидеть белые пятна в управлении и подтянуть KPI до нужного показателя.
1. ОКБ — общая клиентская база на территории, количество торговых точек, которые потенциально могут работать по группе товара компании. Определяется путем сенсуса (описи территории).
2. ПАКБ — планируемая активная клиентская база, количество торговых точек, которые были запланированы из ОКБ на посещение в 1-м квартале 2017
3. АКБ — количество торговых точек (не контрагентов), которые сработали в 1-м квартале 2017 года. Желательно определить критерий по АКБ: минимальный объем продаж, или продажа определенного количества SKU в торговую точку, или то и другое.
4. % покрытия ПАКБ — доля АКБ к ПАКБ.
5. % покрытия ОКБ — доля АКБ к ОКБ.
6. Стабильная АКБ — количество торговых точек, которые сработали в каждом месяце январе, феврале, марте 1-го квартала.
7. % стабильности АКБ — доля стабильной АКБ к общей АКБ.
8. СТТ — системные торговые точки — количество точек, которые за период 3-х месяцев 1-го квартала сработали с результативностью более 75% (количество результативных заказов по точке / количество плановых визитов)
9. % СТТ — доля СТТ к АКБ.
10. АКБ категория — количественное проникновение в категории, количество торговых точек, которые сработали в 1-м квартале по всем категориям товара. Сработка по одной категории считаем, когда торговая точка взяла 3 и более sku из этой категории.
11. % Покрытия АКБ категория – доля АКБ категория а АКБ.
12. План посещений — количество посещений, которое было запланировано в 1-м квартале 2017 года по ПАКБ
13. Заказы — количество выполненных заказов за 1-й квартал 2017, исключая «двойников». Если в один день в торговую точку заказ был доставлен по 2-м расходным накладным, то это один заказ.
14. Результативные заказы — количество заказов с определенным набором критериев, согласно таблицы КПД.
15. Результативность посещений — доля количества заказов к плану посещений.
16. Результативность посещений КПД — доля количества результативных заказов к плану посещений.
17. Стоимость визита — сумма заработной платы агента, включая амортизацию авто и ГСМ за 1-й квартал 2017 / план посещений
18. Стоимость заказа — сумма заработной платы агента, включая амортизацию авто и ГСМ за 1-й квартал 2017 / количество заказов
19. ВМД заказа — валовый маржинальный доход (ВМД) по маршруту за 1-й квартал 2017 / количество заказов.
20. % полезного дохода с заказа = (ВМД минус стоимость заказа) / ВМД заказа
21. ПДЗ — просроченная дебиторская задолженность = сумма просроченной ДЗ / на общую ДЗ. Оплата по факту в расчет не попадает.
22. Системные оплаты по сумме — сумма оплат / сумму плановых оплат по каждому дню.
23. Коэффициент покрытия (КП) показывает долю торговых точек, в которых присутствует полный стандарт планограммы. Определяется путем аудита розницы на наличие ассортиментной матрицы
24. Коэффициент дистрибуции (КД) показывает долю присутствия позиций MML в торговых точках. Определяется путем аудита розницы на наличие ассортиментной матрицы.
Расширьте возможности своих отделов маркетинга и дистрибуции с помощью управленческой аналитики на 10-недельном бизнес-курсе «Прибыльный менеджмент». Получите чрезвычайно точное понимание общих тенденций развития бизнеса и продаж с помощью диагностики первого уровня [Почему?], чтобы понять Где взращивать, Что взращивать и Как взращивать.
Подписывайтесь на telegram канал, где выкладываю интересный материал, которого нет на сайте.
В поисках вечной батарейки: как меняются технологии создания аккумуляторов
Читайте «Хайтек» в
Какие задачи решают новые технологии
За создание литий-ионной технологии трое ученых получили Нобелевскую премию по химии в 2019 году. Ведь в том числе благодаря их изобретению расширились возможности по использованию портативной техники (ноутбуков, смартфонов, планшетов). Сегодня к накопителям энергии предъявляют все более высокие требования, и это подталкивает к поиску новых технологий. Важен баланс между габаритами, энергетическими характеристиками и ценой. Первые два параметра можно настраивать в широком диапазоне, но цена остается серьезным препятствием. Да и технологии, использующие литий, упираются в ограничение: лития в природе не так много, а его добыча обходится достаточно дорого. Прогресс последних лет затрагивает, скорее, энергоэффективность, а не качественные характеристики. Хотя разработок много, инновации не так быстро попадают на массовый рынок.
Развитие батарей для электротранспорта, складской техники и космической отрасли происходят существенно быстрее. Технологический рывок произойдет и на массовом рынке, но для этого производители мобильной техники должны выбрать автономность устройств как ключевой элемент добавленной стоимости. Однако ожидание будет долгим. По оценкам Международного энергетического агентства, основной технологией в ближайшие десятилетия останутся литиевые аккумуляторы. Выход новых разработок на рынок прогнозируются не ранее 2025 года. Но фундамент будущих изменений закладывается уже сейчас, основные тренды связаны с технологией быстрой зарядки, уменьшением габаритов и повышением срока службы аккумуляторов.
Стартапы ради быстрой зарядки
Технология быстрой зарядки включает три основных момента: алгоритмы заряда, энергетические параметры и сечение проводника. Если речь о мобильной технике, то ее зарядка не предполагает разнообразия разъемов и кабелей. Type-C стал стандартом для индустрии, поэтому на первый план выходят алгоритмы заряда, такие как Power Delivery и Quick Charge.
Их основная задача — обеспечить передачу большего количества энергии по тому же проводу, не превышая допустимые значения силы тока (до 3 А). Но устройство не должно перегреваться во время зарядки, поэтому сегодня делают упор не только на увеличение зарядного напряжения, но и на разработку специальных алгоритмов, постепенно понижающих мощность (по мере того, как батарея восстанавливает уровень заряда). Кроме того, технология быстрой зарядки становится одним из пунктов, обеспечивающих «привязку» потребителя к экосистеме конкретного производителя.
Канадский стартап GBatteries пытается решить задачу быстрого восполнения заряда с помощью искусственного интеллекта. Быстрая зарядка происходит благодаря последовательным микроимпульсам постоянно меняющегося тока. Действуют умные алгоритмы, которые встроены в зарядные станции: они определяют, когда именно отправить очередной импульс и определяют уровень напряжения, чтобы не навредить аккумуляторам. Технологию планируют совместить с текущим поколением литий-ионных аккумуляторов. Планируется, что благодаря задумке батареи электрокаров смогут восполнять заряд за 5–10 минут. Канадцы разрабатывают зарядные станции и для другой техники.
Технологию быстрой зарядки предлагает и израильский стартап StoreDot. Вместо модификации принципа работы зарядного устройства они обратились к химии самой аккумуляторной батареи. Вместо графита используются олово, германий и кремний в сочетании с органическими соединениями. Заряд батареи, используемой в электросамокате, получилось восполнить всего за пять минут. Специалисты разрабатывают аккумулятор для телефона, который сможет восполнить заряд так же быстро. Среди инвесторов стартапа — Mercedes Daimler и Samsung. Правда, опять же, вопрос в цене — изначально батареи точно не будут дешевыми.
Стартапы, пообещавшие супертонкие аккумуляторы
Если говорить о литиевых батареях, то задача по производству аккумулятора толщиной около 1 мм вполне осуществима. Но если нужно сохранить емкость, физический объем активного вещества в аккумуляторе должен остаться неизменным. Как результат — получится тонкая, но очень широкая батарея. При этом показатели энергетической эффективности устройства будут ниже, чем у его стандартных «собратьев».
Поэтому сверхтонкие литиевые АКБ востребованы лишь в специфических областях приборостроения. Что касается массового рынка, компактные устройства всегда пользуются спросом. Например, в линейке внешних аккумуляторов федеральной дистрибьюторской сети Energon модель Revolter 5000 толщиной всего 5 мм, и такие габариты уже воспринимаются потребителями как супертонкий формат.
Среди технологий, которые позволят сохранить емкость батареи при уменьшении габаритов — стартапы из Японии. К примеру, 3Dom (стартап, который появился в 2014 году в Токийском университете). К 2022 году в планах — производство литий-металлических батарей, которые при таких же габаритах более эффективны, чем современные литий-ионные аккумуляторы.
В основе японской технологии — замена углеродных материалов на металлический литий. Подобная химия обеспечивает более высокую плотность энергии, но одновременно с этим растет риск коротких замыканий и воспламенений.
Стартапы: для долгой службы
Существует много электродных материалов, обеспечивающих выдающуюся устойчивость к циклированию — например, LTO или NMC. Но из-за стоимости такие аккумуляторы недоступны для широкого потребительского рынка. И пока нет предпосылок того, что ситуация скоро изменится.
Но изменения происходят — не только в области химии устройств, но и контролеров, менеджмента заряда, энергоэффективности устройств. Работая в комплексе, они значительно продлевают жизнь аккумуляторов. Даже Илон Маск, который любит смелые обещания, признал: перспективнее улучшение литий-ионных аккумуляторов, а не поиск совершенно новых технологий.
Среди новых технологий, которые собираются предложить рынку — батареи, где дорогие металлы заменены дешевыми и распространенными веществами. Например, американский стартап Conamix обещает убрать кобальт — элемент, который добывают в Конго. Правительство этой республики постоянно поднимает налог на сырье. Текущие разработки позволят уменьшить содержание этого металла в аккумуляторах для электромобилей с 20% до 4%.
Как батареи тормозят развитие перспективных технологий
К сожалению, медленный прогресс в сфере аккумуляторных батарей во многом ограничивает развитие смежных индустрий. Смартфоны, ноутбуки, электромобили становятся все более технологически «нафаршированными» и требуют все больше энергии. Например, активному пользователю смартфона батареи хватает на 6–8 часов. Причем в среднем россиянин каждый день открывает 10–12 приложений. В связи с этим разработчики смартфонов подбирают энергосберегающие программы. Одни производители встраивают приложения в прошивку по умолчанию, другие оставляют выбор за пользователем — предлагают скачать их. Если появятся эффективные батареи, расширятся возможности по использованию программ.
Еще одно направление — солнечная энергия. Большинство установок занимают немало места, а их стоимость высока. Известный факт: львиная часть затрат на развертывание солнечных систем связана с приобретением аккумуляторов, которые будут запасать энергию. Поэтому более дешевые и энергоэффективные накопители обеспечили бы значительно более широкое применение зеленых технологий.
Поиск эффективного хранения энергии происходит и в сфере солнечной энергии. Например, исследователи Стэнфордского университета предлагают альтернативу — использование биологических систем. Технология предполагает извлечение метана с помощью бактерии Methanococcus maripaludis. Затем его планируют преобразовывать в электричество благодаря существующей инфраструктуре.
Внедрение новых технологий — дело небыстрое. Ведь даже с момента создания стабильных литий-ионных аккумуляторов до старта серийного производства прошло более 10 лет.