зачем в часах два баланса
ОСНОВА ВСЕГО — БАЛАНС. РАССКАЗЫВАЕМ ПРО ЧАСТОТУ КОЛЕБАНИЙ В МЕХАНИКЕ
Сколько бы Apple не презентовали новых Apple Watch (хотя последними буквально пару дней назад выкатили Iphone 12), фанаты традиционных наручных часов никуда не исчезают. Как ни крути, а мы, адепты механических часов, попадаем под действие некой магии, которая состоит из сотни маленьких деталей, соединенных тонкой работой скрупулезных мастеров и собранных в небольшой корпус часов.
В человеческом организме важен каждый капилляр и косточка, но ключевой орган — это сердце или кор в перевод с латинского. Оно качает кровь, которая циркулирует по всему телу и обеспечивает его жизнедеятельность. Если провести прямую аналогию, в механических часах ключевым элементом является механизм, а если быть более точной — пружина баланса. Забавно, каким крошечным может быть элемент первостепенной важности — его диаметр составляет чуть меньше 1 сантиметра.
Общепринятым изобретателем механизма с балансовым колесом и спиралью пружины баланса считают голландского ученого Христиана Гюйгенса — ярого фаната Архимеда, математики и астрономии. Он зарегистрировал патент в 1675 году — если вы знакомы с историей часов, то догадываетесь, что его изобретение использовались в карманных часах.
Спустя почти 500 лет принцип работы остается неизменным — пружина вместе с балансом обеспечивают ход времени благодаря колебаниям баланса. Спусковой механизм дает импульс, чтобы колесо баланса совершило вращение — это звук “ТИК”. Во время вращения пружина сжимается и уравновешивает распределенную энергию, а потом разматывается и заставляет баланс качнуться назад — это звук “ТОК”. То есть по сути, колебание состоит из двух полуколебаний.
По большому счету, работу колеса баланса можно описать таким параметром, как частота колебаний. Обычно ее считают либо в полуколебаниях в час, сокращенно пк/ч, либо в Герцах или Гц — это количество полуколебаний в секунду. Чаще всего, на официальных сайтах или инструкциях к часам ее указывают в пк/ч, однако вы легко можете перевести одну единицу измерения в другую. Если где-то на форуме вы прочитали, что в часах установлен механизм с частотой 3 Гц, а вы хотите узнать показания в пк/ч, нужно сделать следующее: умножить на 2 значение в Герцах и затем на 3600 (количество секунд в часе). В итоге получится 21600 пк/ч.
В старых карманных часах частота находилась в диапазоне от 14400 до 16200 пк/ч — такая балансовая частота обеспечивала относительно стабильную работу более крупного механизма. В 19 веке частота подросла до 18000 полуколебаний в час и долгое время 5 полуколебаний в секунду оставались стандартом.
С появлением наручных часов размер корпуса резко уменьшился, детали стало производить гораздо сложнее, при этом не теряя в качестве — они стали более мелкими и деликатными. С точностью дела были не очень — в первых наручных часах она была в разы ниже, чем в карманных. Как вам +/-10 минут в день?
Однако часовые инженеры нашли выход из этой ситуации: сделали пружину короче и увеличили количество колебаний до 21600 пк/ч. Точность и стабильность самой системы пружина-баланс возросла, и казалось бы, нарисовалась понятная взаимосвязь между двумя параметрами — чем выше частота полуколебаний, тем стабильнее работа системы и выше точность часов. Далее частота увеличилась до 28800 пк/ч, а в 1970-ых возросла до 36000 пк/ч — часы такой частоты представил японский бренд Seiko. Тогда еще Grand Seiko были элитной коллекцией, а не отдельным брендом.
Казалось бы, почему не увеличивать частоту до бесконечности, тем самым создавая экстраординарную точность и все более и более плавный ход стрелки? Дело в том, что такие высокочастотные механизмы должны противостоять силе трения, которая провоцирует больший износ деталей и требует особого масла. Либо же использования инновационных материалов, которые могут себе позволить крупные бренды в сегменте премиум. Вещи с эксклюзивными показателями частоты и точности естественно имеют место быть, но стоят достаточно дорого и доступными их, мягко говоря, назвать нельзя.
Поэтому одной из самых распространенных частот, на которых работают механические калибры часов, остаются 21600 и 28800 пк/ч. Они позволяют соблюдать баланс между адекватной ценой, достаточной точностью и долговечностью механизма. А компетентный мастер в сервисном центре сможет при желании дополнительно отрегулировать точность ваших часов.
Что такое ошибка хода («выкачка») и как ее корректировать
Автор: shultzie · Опубликовано 07.08.2018 · Обновлено 06.07.2021
На часовых форумах часто встречается такое понятие, как ошибка хода (также используют термин «выкачка» или «beat error»), которую обычно определяют как «асимметричное колебание балансового колеса». Но что это означает?
В этой статье мы расскажем про ошибку хода, ее влиянии на работу механизма и рассмотрим способы ее коррекции.
Что такое ошибка хода?
Как мы знаем, колесо баланса совершает полуколебания в обе стороны. В идеальном случае баланс должен поворачиваться в любую из сторон на одинаковый угол за одинаковый период времени. Ошибка хода — это разница во времени (измеряется в миллисекундах) между асимметричными полуколебаниями баланса. В идеальных условиях длительность полуколебаний баланса одинакова и, соответственно, ошибка хода равна нулю.
Но в реальности идеальных условий не существует. Например, поворот колеса баланса по часовой стрелке может занимать немного больше времени, чем колебание в обратном направлении. Механизм как бы выбивается из ритма.
В приведенном примере ошибка хода может составлять 1,2 мс. Следовательно, поворот по часовой стрелке длится на 1,2 мс дольше, чем в направлении против часовой стрелки.
Как появляется ошибка хода?
Балансовое колесо совершает колебательные движения в обе стороны, и с каждым проходом импульсный камень ударяет по рожку анкерной вилки.
Спусковой механизм: желтым цветом выделено колесо баланса, синим — анкерная вилка и анкерное колесо, красным — палеты и импульсный камень
Анкерная вилка расположена между двумя ограничительными штифтами.
Синим и серым выделены анкерная вилка между ограничительными штифтами, желтым цветом — анкерное колесо, красным — палеты. На конце анкерной вилки имеется рожок.
Нулевое положение баланса — это положение покоя при расслабленной заводной пружине, при этом положение импульсного камня наиболее важно как средней точки между колебаниями балансового колеса в обе стороны.
Идеальным местом покоя импульсного камня в нулевом положении является позиция посередине ограничительных штифтов. В этом случае ошибка хода равна нулю.
Однако на практике достигнуть этого практически невозможно: импульсный камень, вероятно, окажется немного левее или правее от этой точки. Это вызывает ошибку хода, поскольку одно направление полуколебания длиннее другого.
Помните, что мы говорим о миллисекундах, поэтому фактическая разница во времени здесь очень мала.
Как корректировать ошибку хода?
На мосту баланса современных часов, кроме «градусника» – рычажка регулировки точности, расположен рычажок регулировки симметричности колебаний баланса относительно точки равновесия, так называемой «выкачки». В этом рычажке закреплен конец спирали (волоска).
Массовое применение рычага регулировки «выкачки» началось в 60-е годы прошлого века. До этого конец волоска жестко фиксировался к мосту баланса, а ошибка хода регулировалась поворотом волоска на оси баланса. Это достаточно сложная операция, которая при отсутствии опыта и специального инструмента может привести к повреждению спирали баланса. Самостоятельно делать ее без крайней необходимости я бы не рекомендовал.
На мосту баланса современных часов расположены два рычажка: Градусник (1) и рычаг регулировки выкачки (2)
При наличии регулятора «выкачки» регулировка хода начинается с установки симметричности колебаний. Это принципиально важно для нормального самозапуска часов при их первоначальном заводе. Часы с сильно сбитой «выкачкой» самостоятельно запуститься не смогут и их потребуется потрясти, чтобы баланс сдвинулся и часы пошли.
Регулировку можно грубо произвести даже без таймграфера. Для этого надо спустить заводную пружину и добиться перемещением рычажка «выкачки», чтобы анкерная вилка встала строго посередине между ограничительными штифтами. Как правило, такой регулировки достаточно для того, чтобы часы уверенно запускались.
При наличии таймграфера на следующей стадии часы устанавливаются на прибор и поворотом рычажка «выкачки» добиваются диаграммы с одиночной линией хода вместо двух параллельных линий. Нормальными считаются значения до 0,5 мс. Регулировка «выкачки» делается первой, т.к. она влияет на точность хода. Затем производится установка точности хода с помощью «градусника».
Заключение
Ошибка хода является наименее значимым параметром «здоровья часов» в сравнении с амплитудой баланса и точностью. Часы с большой ошибкой хода способны показывать точное время при наличии высокой амплитуды и стабильного суточного хода.
Тем не менее часы со сбитой «выкачкой» наиболее подвержены отклонениям точности при низкой амплитуде и резких изменениях положения часов, а также могут останавливаться раньше полного расслабления заводной пружины.
Зачем в часах два баланса
Трояновский Василий Васильевич
Отечественная часовая промышленность, из года в год наращивая производственные мощности, выпускает все больше часов бытового назначения.
Население нашей страны имеет в своем распоряжении миллионы часов, различных по своему назначению и конструкции.
В процессе эксплуатации часов возникает необходимость их ремонта, периодической чистки и регулировки.
Развитие часовой промышленности требует более совершенной организации и техники ремонта часов.
В настоящее время строят специальные заводы по ремонту часов, крупные ремонтные базы, мастерские и т. п.
Создание ремонтных баз позволяет оснастить их современной техникой, организовать централизованное снабжение фурнитурой (запасными частями), ввести наиболее производительные методы ремонта, улучшить подготовку кадров часовых мастеров, занимающихся ремонтом.
Подготовка новых и повышение квалификации работающих часовых мастеров невозможна без соответствующей литературы.
В книге излагаются отдельные теоретические вопросы и даются практические указания, рассматриваются принципы устройства и работы различных часовых механизмов и их узлов; приведено описание отдельных операций ремонта часов, приборов и инструментов, применяемых при ремонте.
В отдельной главе изложены вопросы организации индивидуального и поточного методов ремонта.
Все замечания и предложения по данной книге, которые будут приняты автором с благодарностью, направлять по адресу:
Москва, И-164, Проспект Мира, 106, Машгиз.
БЫТОВЫЕ ПРИБОРЫ ОПРЕДЕЛЕНИЯ ВРЕМЕНИ
§ 1. Классификация бытовых приборов определения времени
Приборы определения времени, применяемые в быту и технике, отличаются большим разнообразием не только конструктивных форм, принципиальных схем построения, но и принципами действия. Разнообразие конструктивных форм, схем и принципов построения приборов определения времени объясняется различным их назначением и условиями, в которых этим приборам приходится работать.
В зависимости от привода применяемого в приборах времени, они подразделяются на следующие группы:
а) с механическим приводом, в которых основной движущей силой является пружина любой формы или гиря; завод пружины или поднятие гири производятся рукой;
б) с электромеханическим приводом, в которых основной движущей силой также являются пружина или гиря, которые периодически в строго установленные моменты времени с помощью автоматически действующих электромагнитных систем возвращаются в исходное рабочее положение;
в) с электрическим приводом, в которых применяются различные формы электромагнитов периодического действия или с постоянно вращающимися якорями.
К этим группам относится подавляющее большинство приборов определения времени. В них для отсчета времени используются колебания различной частоты.
В бытовых часах для отсчета времени используются колебания маятника или баланса частотой от 0,5 до 3 гц.
В секундомерах и многих специальных технических приборах отсчета времени частота колебаний баланса находится в пределах от 2,5 до 200 гц. В зависимости от назначения приборы определения времени подразделяются на следующие группы:
а) для показа текущего значения времени; к этой группе относится все часовые приборы вне зависимости от принципа их действия, в задачу которых входит отсчет и показание текущего значения времени в секундах, минутах и часах;
б) для отсчета заранее заданных промежутков времени; сюда относятся приборы, производящие отсчет различных отрезков времени, и многие технические приборы, применяемые для регулирования технологических процессов.
По типу колебательных систем, являющихся основой отсчета времени, приборы могут быть подразделены на следующие группы:
а) с маятниковой колебательной системой; к этой группе относятся все типы часовых приборов, имеющих маятник в качестве регулятора;
б) с балансовой колебательной системой; к этой группе относятся все типы наручных, карманных, настольных, настенных и других типов часовых приборов, в которых баланс является регулятором хода; особенностью этой группы часовых приборов является то, что колебательная система с регулятором может работать при любом положении прибора;
в) приборы с электромагнитной колебательной системой; к этой группе преимущественно относятся электрические часы, синхронные часы, (различные электрические хроноскопы, различные реле времени.
Особенностью этих приборов является высокая точность отсчета времени при самых различных отсчитываемых промежутках.
Приборы данной группы получают все большее распространение как в технике, так и в быту.
§ 2. Гармонические колебания
Время измеряется путем регистрации периодически повторяющихся действий элементов приборов времени.
В современных приборах времени такие периодически повторяющиеся действия совершаются специальными элементами, способными при определенных условиях производить гармонические колебательные движения.
Для того чтобы уяснить работу часов, необходимо проследить за работой этих элементов.
На фиг. 1 показан пружинный маятник, с помощью которого можно пояснить гармоническое колебательное движение.
Фиг. 1. Пружинный маятник
Верхний конец пружины жестко закреплен, а к нижнему подвешен груз А.
Под действием груза пружина получит некоторое растяжение.
Если груз, находящийся в состоянии покоя, толчком переместить в направлении вертикали, как указано штриховой стрелкой, то груз переместится на некоторое расстояние.
Величина перемещения груза будет зависеть от силы полученного толчка и сопротивления пружины. В нижней точке В эти две силы будут уравновешивать друг друга. Возврат груза происходит за счет упругой реакции пружины.
Сила реакции пружины может быть столь значительной, что груз не только будет возвращен в исходное положение, но и поднят выше. Груз, переместившись выше положения покоя, остановится в положении Б и под действием силы тяжести устремится опять вниз, вызвав при этом растяжение пружины, и вновь пройдет положение покоя и т. д. Под действием толчка возникает гармонический колебательный процесс перемещения груза на какой-то период времени. По мере прохождения времени путь перемещения груза будет уменьшаться и в конечном счете он займет положение, из которого был выведен толчком. Процесс затухания колебательного движения происходит в результате затраты энергии пружины на преодоление сопротивления воздуха перемещению груза и преодоление внутренней реакции самой пружины.
Затухание колебаний груза может и не произойти, если толчок или так называемый импульс силы, выводящий груз из состояния покоя, периодически будет повторяться. Если повторяющийся импульс силы по своей величине не будет превышать сил трения, противодействующих перемещению груза, то в этом случае груз будет колебаться, перемещаясь между двумя точками — верхней Б и нижней В.
Путь перемещения груза между этими точками, или размах, принято называть амплитудой колебания. Время, прошедшее от начала перемещения груза до его возврата в исходную точку, принято называть периодом колебания Т.
Перемещение между двумя крайними точками Б к В происходит за половину периода — Т/2.
Аналогичное явление можно наблюдать, если на одном конце нерастяжимой нити (фиг. 2) подвесить небольшой груз А, а второй конец закрепить неподвижной точке О. Нить под действием груза займет вертикальное положение. На нить будет действовать сила тяжести Р. Такое состояние подвешенного груза называют состоянием покоя. Отведя груз на некоторый угол от положения покоя и отпустив его, последний начнет колебаться.
drivehelp.ru
Как выглядят отдельные части часового механизма и каковы основные неисправности этих деталей (для механических часов)
Поскольку довольно часто причиной остановки часов является загрязненность механизма, высыхание масла, проникновение влаги внутрь корпуса часов и т. д., то иногда бывает достаточно просто разобрать часы, при этом промыв или смазав их механизм. Устройство часов показано на рис. 1.
Рис. 1. Кинематическая и принципиальная схема механизма часов:
Платина
Платиной называется специальное основание, на котором крепятся все детали часового механизма. Для крепления деталей в платине делаются углубления и выступы (расточки). Соответственно, форма и размеры платины зависят от формы и размера часов. Делают платину, как правило, из латуни.
Для того чтобы укрепить вращающиеся детали, нужны мосты, представляющие собой специальные латунные пластины различной формы и размеров. Например, в механических часах при помощи мостов крепятся следующие части: колесная система, система баланса, анкерная вилка и барабан. В том случае, если часы имеют дополнительные устройства (календарь, подзавод и т. д.), они тоже крепятся на мостах.
Детали двигателя
Гиревые двигатели могут работать только в стационарных условиях и отличаются большими размерами, поэтому их применяют в устройстве напольных, настенных, а также башенных и других крупных часов.
Пружинные двигатели более компактны и более разнообразны, чем гиревые, но менее точны. Состоит такой двигатель из барабана, его вала и заводной пружины. Двигатели могут различаться по конструкции как самих пружин, так и по устройству барабана. Барабан может быть подвижным или неподвижным. Если барабан подвижен, значит, на нем и укреплена заводная пружина, если неподвижен, пружина укреплена на валу, который и вращается, барабан же остается зафиксированным. Как правило, двигатель с неподвижным барабаном используется в основном в крупногабаритных механизмах.
В часах упрощенной конструкции, например, в будильниках, иногда могут применятся пружинные двигатели без барабанов. В этом случае пружина крепится прямо к валу.
Барабан пружинного двигателя состоит из корпуса, крышки и вала. Корпус выглядит как металлическая коробка цилиндрического вида, у нижней кромки которой расположен зубчатый венчик. На дне корпуса расположено отверстие вала. Такое же отверстие имеется на крышке барабана. Кроме того, с краю крышки расположен паз для открывания крышки.
Заводная пружина прикрепляется к валу специальным крючком. Наружный конец пружины крепится на барабане при помощи замка. Продолжительность хода часов от одного завода зависит именно от пружины, т. е. от ее размеров.
Первая операция при ремонте двигателя − вскрытие барабана. Это следует делать очень осторожно, так как неправильное вскрытие барабана может привести к его поломке. Вынимая пружину из барабана, берите ее за внутренний конец и осторожно придерживайте, чтобы она не могла мгновенно развернуться.
Заводная пружина может быть разорвана посередине или сразу в нескольких местах. Такую пружину надо заменить. Также пружина может быть оборвана на внутреннем витке. В этом случае ее надо попробовать исправить. Для этого внутренний виток пружины приходится вытягивать и распрямлять, следя, чтобы он не потерял свою спиральную форму.
Барабан может быть перекошен на валу, его зубья поломаны или деформированы, а также искривлены крышка или дно барабана. Если на зубьях барабана имеются заусенцы или царапины, их нужно зачистить. Погнутые зубья распрямляются отверткой или ножом. Если зубья сломаны, барабан придется менять.
Еще одной часто ломающейся деталью, особенно в наручных часах, является пружина собачки, изготовляемая из тонкой стальной проволоки (рояльной струны). В случае поломки легко можно изготовить новую пружину из отрезка струны. Если часы крупногабаритные, то пружина выпиливается из ленточной стали.
Это необходимо для того, чтобы пружина ровно легла в барабан и, кроме того, позволяет не трогать ее пальцами и не загрязнять при установке.
После того как пружина установлена и ее наружный виток закреплен на барабане, ее смазывают двумя-тремя каплями масла и закрывают крышку вала. Чтобы она держалась плотнее, барабан надо сжать между двумя брусками твердого дерева.
В гиревом двигателе наиболее уязвимыми деталями являются цепи, так как в процессе работы они постепенно растягиваются и отдельные звенья их могут раскрываться. Если это произошло, восстановить цепь можно с помощью плоскогубцев. Сначала звено цепи сжимают в продольном направлении, для того чтобы сошлись разошедшиеся концы, затем-в поперечном, чтобы исправить форму звена.
Если деформировано большое количество звеньев (до 20), то весь отрезок цепи можно убрать, на часах это практически не отразится. Более длинный отрезок цепи надо будет возместить.
Детали основной колесной системы (ангренажа)
Все дефекты зубчатой колесной передачи, как правило, обусловлены дефектами зацепления (слишком мелкое или слишком глубокое зацепление, сломанные или перекошенные зубья и так далее). Поэтому каждую пару колес следует проверять отдельно. Если выяснится, что какая-то пара колес вращается недостаточно свободно, надо проверить целостность зубьев по всей окружности и правильность расположения осей. По отношению к платине они должны быть перпендикулярны.
Если зубья колеса погнуты, их можно исправить при помощи широкой отвертки. В том случае, если зубья сломаны, лучше, конечно, заменить колесо. Но когда поломан только один зуб, его возможно заменить новым. Для этого в ободе колеса выпиливается прямоугольное отверстие, куда вставляют латунную пластинку. Затем припаивают новый зуб и обрабатывают напильником.
Детали регулятора хода
Длина спирали изменяется при помощи специального устройства, называемого градусником, или регулятором. Градусник крепится на балансовом мосту. На выступе градусника при помощи штифтов или специального замка крепится наружный виток спирали.
Иногда вместо штифтов или замка используются два ролика с рукояткой для вращения. Регулятор-деталь очень хрупкая, и при повреждениях его обычно заменяют. Однако иногда, особенно если повреждения мелкие и незначительные, его можно починить.
Детали спуска
В современных часах в основном применяются так называемые анкерные спусковые устройства.
Они передают энергию завода на баланс или маятник. Спусковое устройство состоит из ходового колеса, анкерной вилки и установленного на оси баланса двойного ролика с эллипсом.
Если палета сломана или на ребре появились сколы, ее надо заменить. Новая палета устанавливается в предварительно очищенный паз и приклеивается шеллаком.
Любой, даже самый мелкий дефект зубьев ходового колеса может нарушить работу часов, поэтому в случае поломки зубьев колесо лучше заменить. Если зубья колеса изношены неравномерно, колесо можно исправить на токарном станке, подровняв зубья напильником.
Сложность ремонта и хрупкость деталей анкерного спуска часто заставляет в случае поломки менять все спусковое устройство.
Детали стрелочного механизма
К стрелочному механизму относятся следующие детали: минутный триб (шестеренка), часовое колесо, вексельное колесо с вексельным трибом, переводное колесо. Колеса и трибы стрелочной передачи не имеют собственных осей.
На центральной оси крепится минутный триб, на втулке которого вращается часовое колесо. Вексельное колесо с вексельным трибом установлены на специальной оси, сделанной в виде штифта, закрепленного в платине. В наручных часах ось составляет с платиной одно целое.
Вексельный триб или вексельное колесо приходится ремонтировать нечасто. Большой радиальный зазор вексельного триба может вызвать перекос вексельного колеса и испортить зацепление его зубьев с зубьями минутного триба, а также зацепление часового колеса с вексельным трибом. В случае такого дефекта приходится менять ось вексельного триба, что легко сделать, если, конечно, она выполнена в виде штифта.
Если же ось составляет с платиной одно целое, то старую надо будет срезать, а на ее месте просверлить отверстие и в него запрессовать новую ось необходимого вам диаметра.
В том случае, если платина слишком тонкая и вы беспокоитесь за ее прочность, ось надо осторожно пропаять.
Если же, напротив, триб вексельного колеса слишком туго насаживается на ось, тогда отверстие триба прошлифовывают, вводя в него медную проволоку, покрытую смесью масла с мелким наждаком.
Ось вексельного триба должна быть достаточно длинной, чтобы слегка выступать над его поверхностью. Это необходимо для того, чтобы триб не соприкасался с циферблатом. Если же триб слишком высок и все-таки трется о циферблат, то торец триба стачивают на мелкозернистом наждачном камне, после чего отверстие и зубья триба надо очистить от заусенцев.
Основной деталью стрелочной передачи, обеспечивающей движение всего стрелочного механизма, является минутный триб. Поскольку он насажен на центральную ось, то довольно частым видом ремонта является исправление посадки триба. Надо следить, чтобы при переводе стрелок минутный триб свободно проворачивался на оси, не вызывая торможения часового механизма.
Если у минутного триба слишком короткая и толстая трубка втулки, надо ее проточить. Для этого ее можно сжать кусачками, введя в отверстие минутника стальную иглу.
Кроме того, при недостаточной высоте оси переводное колесо может заедать. Чтобы устранить этот дефект, колесо надо прошлифовать на наждачном камне.
Детали механизма завода пружины и перевода стрелок (ремонтуара)
У всех моделей часов механизм завода пружины и перевода стрелок во многом сходен. Различаются, как правило, лишь способы, которыми прикрепляются друг к другу составляющие этот механизм колеса.
В состав ремонтуара входят следующие детали: барабанное колесо, которое закреплено на квадратной части вала барабана, заводное колесо и заводной триб, установленный на заводном валу.
Заводное колесо устанавливается в гнезде барабанного моста и закрепляется накладной шайбой. При ее откручивании надо помнить, что винт, удерживающий шайбу, может иметь левую нарезку.
Если часы старые, то такой винт может вообще отсутствовать. В таком случае заводное колесо крепится шайбой с резьбовым отверстием.
Заводное колесо и заводной триб вращаются под прямым углом друг к другу и соединяются при помощи зацепления. Обычно у заводного колеса имеется один зубчатый венец для зацепления, но в часах устаревшей конструкции заводное колесо имеет два зубчатых венца: один предназначен для взаимодействия заводного колеса с барабанным, а второй, на торце, для взаимодействия с заводным трибом.
В заводную муфту входит рычаг, который опускается при нажатии кнопки. Опустить рычаг можно при помощи пружинки.
Заводная пружина часов действует таким образом: вращающийся заводной вал увлекает насаженную на него заводную муфту, которая вращается вместе с валом и своими торцовыми зубьями зацепляет заводной триб, который передает свое движение заводному колесу.
Когда заводной вал вращается в обратную сторону, то собачка барабанного колеса тормозит барабанное и заводное колеса, а вместе с ними и заводной триб.
Когда вы хотите перевести стрелки, то нажатие кнопки приводит к зацеплению нижнего торцового зубчатого венца заводной муфты с вексельным колесом. Механизм завода пружины оказывается отключенным, и происходит перевод стрелок.
Если вы осматриваете механизм перевода стрелок, то необходимо тщательно проверить состояние зубьев всех колес и трибов, зазоры всех вращающихся деталей, а также то, насколько правильно взаимодействуют друг с другом рычаги.
Если обнаружится, что зубья заводного триба и заводной муфты погнуты, сломаны или стерты, то ремонт их бесполезен. Такие детали могут быть только заменены.
Одной из часто ломающихся деталей ремонтуара является заводной вал. Заводские причины дефектов могут быть следующие:
В современных часах заводная головка выполнена как одна деталь, но в часах устаревших конструкций она представляет собой две детали: основная (собственно головка) и капсула, сделанная из мягкого металла (золота или серебра), которым обтягивают основную головку. Если покрытие головки нарушено, ее следует заменить.
Крепление головки на резьбе заводного вала должно быть надежным и крепким, ни в коем случае не допускающим самопроизвольных отвинчиваний.
Если заводную головку приходится менять, то обратите внимание на правильность выбора ее формы и размера. Так, например, заводная головка не должна слишком плотно прилегать к корпусу часов и должна быть достаточно большой, чтобы при заводе часов ее было удобно захватить пальцами.
Детали внешнего оформления
К деталям внешнего оформления часов относятся: циферблат, стрелки, корпус. Корпус современных часов составлен, как правило, из четырех деталей: крышки, стекла с ободком, корпусного кольца. Если часы устаревшей конструкции, то у их корпуса могут быть две задние крышки.
Принципиальная схема соединения корпуса наручных часов такова: в проточку корпусного кольца запрессовывается стекло. Крышка часов навинчивается на корпусное кольцо и имеет уплотняющую прокладку. Заводной вал с головкой выводится в отверстие корпусного кольца через специальную втулку.
Корпусы наручных часов разделяются по своим защитным свойствам на пыле-, влаго- и водонепроницаемые. Из них наиболее распространенным типом защиты корпуса является влагонепроницаемый.
Тип корпуса и его герметические свойства в основном зависят от конструктивных особенностей и качества уплотняющих прокладок.
Влагонепроницаемый корпус предназначен для того, чтобы предохранять часы от коррозии в помещениях с высокой влажностью или от проникания дождевых капель и т. д. Что касается конструктивных особенностей, то влагонепроницаемый тип корпуса мало отличается от других.
Защитные свойства корпуса часов зависят от надежности уплотнения. Все три типа корпуса имеют так называемую резьбовую книжку с уплотняющей прокладкой. Для того чтобы вывести заводной валик наружу, в корпусе имеется отверстие, снабженное втулкой-уплотнителем.
Большинство дефектов корпуса зависит, как правило, именно от его уплотнения. Если уплотняющее кольцо деформировано или повреждено, лучше его заменить; но, если замена невозможна, тогда соединение крышки с корпусом смазывают специальной смесью, сделанной из небольшого количества пчелиного воска и вазелина. Чтобы получить нужную смазку, смесь нагревают и тщательно размешивают. Когда образуется однородная масса, смазку наносят тонким слоем на край корпусного кольца. Затем устанавливается крышка. После того как слой воска застывает, соединение крышки с корпусом герметизируется.
Наиболее удачной конструкцией соединения является такая, при которой заводная головка навинчивается на шейку корпусного кольца. При этом она сама является уплотняющей пробкой. Если необходимо завести часы или перевести стрелки, головку отворачивают и слегка вытягивают из корпуса, после чего она функционирует как обыкновенная заводная головка.
Корпусы некоторых наручных часов, особенно женских, зачастую не имеют даже пылезащиты. В таких случаях корпус изготавливается в виде квадратной или круглой коробочки, в нижней части которой находится механизм, а верхняя половина, несущая стекло, надета на нижнюю и прикрывает собой циферблат.
Если корпус часов водо- или влагонепроницаемый, то механизм в нем обычно лежит свободно. Для лучшей его фиксации в корпусе может быть установлено специальное пружинное кольцо, лапки которого упираются в заднюю крышку часов и в бортик платины. Иногда эти пружинные кольца выполняют функцию дополнительного противоударного устройства, являясь амортизатором.
Некоторые часовые механизмы перед установкой в корпус закрывают тонким латунным защитным кожухом со стороны мостов. При разборке механизма кожух, естественно, требуется удалить.
Как правило, в большинстве случав кожух на механизме не закрепляется и снять его нетрудно. Если кожух закреплен одним или двумя винтами, то их легко убрать.
В часах некоторых конструкций, как устаревших, так и современных, механизм закреплен в корпусе двумя винтами. Головка винтов может быть нормальной или частично срезанной. Чтобы вытащить механизм, винты с нормальной головкой следует вывернуть полностью. Если механизм закреплен винтами с частично срезанной головкой, их достаточно повернуть на пол-оборота, чтобы срез был направлен к корпусному кольцу.
Стекла для часов изготовляются, как правило, из синтетических материалов (чаще всего из плексигласа). Однако сами по себе плексигласовые стекла еще не могут обеспечить необходимой герметичности. Если стекло предназначено для влагозащитного корпуса, то допускается простая запрессовка стекла в корпусное кольцо; но при создании водонепроницаемых корпусов для обеспечения необходимой герметичности применяют дополнительное металлическое или пластмассовое кольцо.
Еще одним недостатком плексигласа является то, что он гигроскопичен, то есть поглощает влагу. В условиях сильной влажности (например, во время дождя или даже тумана) плексиглас может пропустить влагу внутрь корпуса часов. Если после этого наступит внезапное охлаждение часов, то на внутренней стороне корпуса и на стекле осядут капли воды, что обязательно приведет к коррозии стальных деталей механизма. Поэтому для повышения герметичности некоторых моделей часов в последнее время стали снова применять силикатные стекла.
Что касается возможных дефектов часовых стекол, то органические стекла с царапинами, а также покрывшиеся трещинами или отдельными матовыми пятнами необходимо заменить или тщательно отполировать. Не следует заменять силикатные стекла органическими.
В качестве материалов для изготовления корпусов настольных, настенных и напольных часов используются в основном дерево или пластмасса, реже металл. Корпуса будильников в большинстве случаев делают из металла или пластмассы. Заменить стекла в них несложно, а сам корпус практически не подвергается ремонту. Тем не менее лучше всетаки проверить отдельные детали корпуса, по возможности исправить вмятины и царапины на его поверхности (если корпус металлический).
Если корпус часов деревянный, то лопнувшие швы на нем надо аккуратно залить столярным клеем.
Циферблаты часов закрепляются специальными боковыми винтами. Винты зажимают ножки циферблата в отверстиях платины. Иногда циферблат может привинчиваться непосредственно к платине.
При разборке механизма циферблат надо снимать очень осторожно. Если на циферблате имеется гальваническое покрытие, то прикосновение пальцев может оставить на нем неустранимые пятна. Кроме того, их поверхность легко можно оцарапать.
Циферблаты с эмалевым покрытием от легкого нажима получают сколы и трескаются. Если циферблат тонкий, то при неосторожном обращении он легко гнется.
Когда вы снимаете циферблат, то боковые винты следует отвернуть лишь настолько, чтобы можно было сделать это без усилий. После снятия циферблата эти винты надо опять завернуть, иначе они могут потеряться.
Если ножка циферблата сломана, можно припаять новую, но только в том случае, если циферблат эмалевый. На нем очищают место, где должна быть установлена новая ножка. Чтобы при этом циферблат не прогнулся и не потрескался, его надо поддерживать снизу пальцем. Ножки изготовляют из медной проволоки, диаметр которой должен равняться диаметру соответствующего отверстия в платине.
К центральному отверстию циферблата подбирается латунная втулка, входящая без зазора в это отверстие. Ее надевают на втулку часового колеса. Затем сквозь соответствующее отверстие платины размечаются места пайки. Пайку нужно производить быстро, чтобы циферблат не успел прогреться. Пламя надо направлять преимущественно на проволоку ножки, нагревая ее до полного расплавления припоя.
Расположение стрелок на циферблате может быть нарушено. Если ось секундной стрелки не совпадает с центром секундной шкалы циферблата, то при отсчете времени может возникнуть ошибка в несколько секунд. В будильниках такой дефект может послужить причиной неправильной подачи сигнала.
Однако дефекты центрирования можно исправлять только в ограниченных пределах. Если циферблат металлический, то у него можно осторожно подогнуть ножки. Для этого циферблат следует установить на платине, положить на него деревянную пластинку и осторожно постучать по соответствующей стороне циферблата молотком.
К сожалению, на современных циферблатах, где употребляется в основном гальваническое или лаковое покрытие, замена ножки практически невозможна, так как даже самый незначительный нагрев циферблата вызовет появление на его поверхности неизгладимых пятен.
Загрязненный циферблат необходимо очистить. Эмалевый циферблат лучше чистить бензином. В том случае, если он потрескался или слишком сильно загрязнен, его надо промыть. Для этого натрите циферблат мылом, а затем промойте его теплой водой. Чтобы удалить грязь из трещин, надо протереть циферблат срезом сырой картофелины. После промывки циферблат сушат, завернув в папиросную бумагу.
Печатные циферблаты, а также циферблаты с серебрением поля плохо переносят чистку. Бензин и спирт для их очистки применять вообще нельзя. Если заменить циферблат невозможно, а знаки на нем стерлись, можно написать их черной краской или тушью. Для написания лучше использовать деревянную палочку.
Если знаки (штрихи и цифры) на циферблате не нарисованные, а приклеенные, то их лучше отполировать и покрыть бесцветным лаком.
Что касается стрелок часов, то прежде всего, конечно, они должны быть определенной длины и прочно удерживаться на осях. Стрелки не должны соприкасаться одна с другой или задевать циферблат или стекло. Если вы меняете стрелки, то лучше, чтобы они также соответствовали внешнему оформлению часов по форме и цвету.
Секундную стрелку лучше устанавливать по ходу часов, что дает возможность контролировать соприкосновение стрелки с циферблатом или платиной.
Если секундная стрелка расположена по центру циферблата, то она имеет изогнутый конец и устанавливается с зазорами относительно минутной стрелки и стекла. Боковая секундная стрелка должна быть совершенно плоской и проходить над циферблатом с минимальным зазором. Зазор между стрелками надо тщательно проверить по всей окружности циферблата.
Снимать стрелки удобнее всего пинцетом. Отверстие в стрелке должно соответствовать диаметру несущей оси. Если отверстие слишком узкое, надо его расширить при помощи сверла. Сверлят в несколько приемов, постепенно применяя сверла большего диаметра.
При нормальной длине минутной стрелки ее острие должно перекрывать от половины до двух третей ширины минутной шкалы. Если стрелка слишком длинная, ее можно подогнать, положив стрелку на толстое стекло и обрезав ее концы ножом. Конец часовой стрелки должен закрывать не более одной трети цифр.
В том случае, если циферблат часов не плоский, а изогнутый, минутная стрелка обычно сильно сближается со стеклом в районе чисел 6 и 12 и с циферблатом в районе чисел 3 и 9. Эти места необходимо тщательно проверить, чтобы не допустить соприкосновения стрелки со стеклом или циферблатом.
Всего хорошего, пишите to © 2008
В этой статье поговорим об устройстве кварцевых часов и кварцевом резонаторе. Возможно, это будет довольно сложная тема для понимания. Прошу заметить, что в статье рассматривается принцип работы кварцевых часов не на примере существующего механизма а на примитивной абстрактной и грубой модели, показывающей только суть работы большинсва электронных и кварцевых часов.
В этой статье хочется развеять неточности касательно устройства схемы кварцевых часов, которые я встречал на других ресурсах, но об этом чуть ниже.
Рассмотрим для примера самый простейший кварцевый механизм, он состоит из:
Тут кажется все просто, электронный блок подает электрический импульс на катушки статора и ротор делает оборот равный одной секунде. Но как же электронный блок «понимает», что прошло время крутить ротор.
Рассмотрим подробнее работу схему простейшего электронного блока кварцевых часов, он состоит из кварцевого резонатора (зеленый прямоугольник) и микроконтроллера (красный квадрат).
Теперь остановимся подробнее на принципе работы и устройстве кварцевого резонатора.
Работа кварцевого резонатора основана на пьезоэлектрическом эффекте.
Суть пьезоэлектрического эффекта — это генерация ЭДС пьезоэлектриком при сдавливание или растяжения (вибрации) твердого тела (пьезоэлектрика) и наоборот при подаче напряжения пьезоэлектрик будет сдавливаться или расширяться. Важно заметить, такой эффект происходит только в момент сжатия или растяжения.
Любой кварцевый резонатор состоит из монокристалла кварца вырезанным определенным образом и с закрепленными на нем металическими пластинами к которым подведены контакты. Конкретно в часах используются резонаторы с плоским кристаллом в форме камертона (в виде буквы «Y» или «U») с прикрепленными на плоскостях металическими пластинами к которым подключены выводы. Сам кварц диэлектрик — то есть электрический ток он не проводит.
А теперь переходим к сути работы этого компонента. Бытует мнение, что кварцевый резонатор сам генерирует постоянную частоту, при подаче постоянного тока. Это не так, на самом деле все несколько сложнее.
Что бы колебания кварца были постоянные а не затухающие, нужно обеспечить постоянную внешнюю подпитку этих колебаний, например электрическим током определенной частоты.
А теперь переходим к тому, почему резонатор называется резонатором. У самого кристалла кварца есть своя частота механических колебаний. Как я уже приводил пример выше с камертоном. У него тоже есть своя механическая частота, то есть неважно, как его ударили, он будет выдавать звучание на одной и той же ноте (частоте). С кварцем все то же самое. Если подать на выводы электрический ток какой либо частоты (в разумных пределах) кварц будет механически колебаться (в этот раз уже постоянно в отличии от кратковременного заряда) только с определенной своей (резонансной) частотой, генерируя ЭДС и противоЭДС. Но если на выводы кварца подать ток именно той частоты на которой резонирует кварц, то потребление электричества которое превращается в работу (в колебания кварца) будет минимально в отличие от других частот. Грубо говоря кварц пропустит через себя все частоты кроме своей резонансной, при которой резко увеличится сопротивление. Все это нам напоминает работу колебательного контура, но кварц отличается гораздо лучшей добротностью.
Одна из задач микроконтроллера поддержания частоты на выводах кварца при которой он резонирует опираясь на сопротивление при определенной частоте.
Т.Е Микроконтроллер синхронизируется с кварцем а так как частота кварца известна то и известно сколько прошло времени за определенное количество колебаний кварца. Чаще всего частота кварца используемого в часах равна 32 768 гц. При такой частоте можно обеспечить хорошие показатели в точности измерение времени.
Чем бы вы ни руководствовались, сталкиваясь с вопросом выбора часов, при покупке этого аксессуара важно учитывать характеристики установленного внутри механизма. Чтобы получить полное представление о часах, не лишним будет умение разбираться в некоторых технических нюансах. К примеру, знаете ли вы, что такое калибр? Или зачем в механизме нужны камни? От того, каким механизмом снабжены часы зависит не только их точность, но и то, как вам нужно будет с ними обращаться и даже то, как часто от вас потребуется производить ремонт часов. Все эти особенности определяет калибр часов и тип часового механизма.
Что такое калибр?
Если Вы когда-нибудь просматривали часовые каталоги, то наверняка обращали внимание на то, что в списке основных технических характеристик постоянно фигурируют такие понятия, как «калибр» и «количество камней». Давайте разберемся, что они означают. На бытовом уровне калибр является синонимом механизма, однако, если углубиться в этот вопрос, становится понятно, что калибр и механизм – это не одно и то же. Под калибром в часовом деле принято понимать размер и тип механизма, т.е. особенности расположения и конфигурацию различных его частей.
Названия калибров представляют собой буквенно-числовые обозначения, в которых нередко отображаются компания-производитель и функциональные особенности калибра. Диаметр механизма измеряется в миллиметрах, хотя в профессиональной среде чаще встречается другая единица измерения – так называемая линия (1 линия равна примерно 2.255мм).
Одним из важных компонентов механизма, назначение которого не всегда понятно обывателю, являются камни. Здесь мы не имеем в виду не драгоценные камни, которые используются для «внешней» отделки часов, а так называемые функциональные камни. Их задача – уменьшить трение между деталями, на которые в процессе работы механизма приходится наибольшая нагрузка. Чем больше в механизме предусмотрено функций, тем больше в нем используется камней.
До 1902 года роль стабилизирующих подшипников в часах выполняли настоящие рубины, сейчас производители используют искусственно выращенные камни. Почему именно камни? Все просто. В отличие от металла камень не подвергается окислению и коррозии, а после шлифовки гораздо дольше сохраняет свою форму.
На современном часовом рынке представлено огромное количество часов и все это многообразие, по сути, создано для решения одной задачи: дать человеку максимально точную информацию о текущем времени. Помимо наручных часов, которые обслуживают повседневные нужды своего владельца, существуют часы, устроенные особенным образом. К примеру, атомные часы служат источником эталонного времени и постоянно используются в системах спутниковой и наземной телекоммуникации, а также в других сферах, где крайне важно знать точное время. Другой пример – уникальные настольные часы Atmos, которые фактически воплотили в себе мечту человечества о вечном двигателе, так как энергию, необходимую для работы, черпают буквально из воздуха.
На этих часах мы останавливаться не будем (Принцип работы настольных часов Atmos подробнее описан ). Рассмотрим общие принципы работы часовых механизмов в зависимости от конкретного типа.
Чтобы корректно отсчитывать время, любые часы нуждаются в источнике энергии. В зависимости от того, что выступает в качестве такого источника энергии, принято выделять механический и кварцевый механизмы. Современная часовая индустрия, помимо механики и кварца может предложить покупателю часы с гибридными механизмами и так называемые умные часы, функционал которых выходит далеко за рамки привычного измерения времени. Рассмотрим каждый из этих типов подробнее.
Благородная механика
Источником энергии в механических часах служит спиральная пружина, расположенная внутри так называемого заводного барабана. В процессе завода часов пружина закручивается, а при раскручивании передает энергетический импульс на заводной барабан, который, вращаясь, заставляет работать весь механизм часов. Способ закручивания заводной пружины определяет разновидность механизма, говоря более простым языком, тип завода (подзавода) часов.
В часах с ручным подзаводом пружина закручивается при помощи вращения заводной головки. В процессе завода эта крохотная деталь часового механизма накапливает энергию с некоторым избытком. Этот «избыток», который в часовом деле принято называть запасом хода, позволяет часам некоторое время работать без дозаправки очередной порцией энергии. Запас хода в современных механических часах в среднем варьируется от 24 до 72 часов. Промежуток, прямо скажем, не такой уж большой, поэтому ритуал подзавода необходимо проводить регулярно и, что немаловажно, соблюдая ряд несложных правил.
Первое, что настоятельно рекомендуют мастера часового дела – снять часы с руки. Это позволит избежать лишнего давления на заводную головку. Вращать заводную головку нужно плавно, небольшими порциями, избегая резких и слишком сильных движений. Не стремитесь поскорее отвязаться от скучной процедуры, выполняя завод «одним махом»: это только навредит механизму.
Совет: если стандартное вытягивание заводной головки перед началом подзавода проходит с трудом, ни в коем случае не вытягивайте ее силой. Манипуляцию выполняйте параллельно с плавным вращением заводной головки, и проблема будет решена.
Заводить часы можно, вращая заводную головку либо по ходу стрелок, либо в обоих направлениях. Хотя первый вариант предпочтительнее, время от времени поворачивать заводную головку назад все же необходимо. Этот нехитрый прием позволяет перераспределить в механизме смазочный материал и избежать нежелательной поломки.
Процедуру завода желательно в одно и то же время. Так вы снизите погрешность хода до минимума.
Раз уж мы заговорили о погрешности хода, нужно отметить главный недостаток механических часов. Дело в том, что заводная пружина в «механике» имеет неприятное свойство раскручиваться неравномерно, что приводит к постепенному снижению точности часовых показаний. При отсутствии должного внимания со стороны хозяина модели с ручным подзаводом накапливают погрешность от 5 до 30 секунд в сутки.
Точность хода часов определяется множеством факторов, в числе которых положение часов, температура в процессе носки, степень износа деталей механизма, наличие ударов и встрясок в процессе эксплуатации, корректность процедуры подзавода и др.
В часах с автоматическим подзаводом функцию генератора энергии для заводной пружины выполняет специальный модуль. Его основу составляет ротор (инерционный сектор), который под действием естественной жестикуляции владельца вращается вокруг центральной оси часов и через систему шестеренок заводит пружину. Современные модели снабжаются настолько «чувствительными» механизмами, что иногда достаточно малейшего движения запястья, чтобы ротор пришел в движение и снабдил заводную пружину дополнительной порцией энергии.
Таким образом, необходимость в постоянном подзаводе часов отпадает, но только при условии, что вы носите часы, не снимая. Если же в вашей личной коллекции несколько моделей или вы носите часы от случая к случаю, оставляя их без конакта с запястьем больше, чем на 8 часов, подзавод механизма производить обязательно.
Плюс ручного подзавода в том, что оживив «автоматику» после долгого простоя, вы параллельно перераспределите смазку в механизме и уплотнителе заводной головки. Однако помните, что излишнее усердие в этом вопросе провоцирует преждевременный износ механизма. Ремарка: для полного завода автоматического механизма хватает 30 вращений заводной головки. Понять, что часы заведены полностью, можно по характерному прерывистому пощелкиванию, возникающему в процессе завода.
Отличная альтернатива заводу автоматики вручную – специальная шкатулка для подзавода (виндер).
В особых случаях для подзавода механизма требуется специальный инструмент типа отвертки. По такому принципу предлагается возвращать к жизни часы из коллекции MP-05 La Ferrari от компании Hublot. Внешне модель напоминает мотор автомобиля, и, возможно, именно поэтому традиционной заводной головке места здесь попросту не нашлось. Хотя вряд ли эту маленькую неприятность можно назвать недостатком, потому что механизм этого шедевра швейцарской часовой инженерии обеспечен таким запасом хода, что часы вряд ли вообще когда-нибудь придется заводить. В автономном режиме MP-05 La Ferrari способны работать до 50 суток.
Ремарка: в случае, если вы снимали часы ненадолго, достаточно просто вернуть их на запястье. Запас хода в часах с автоподзаводом еще никто не отменял!
К минусам самозаводящихся часов можно отнести то, что за счет добавления модуля автоподзавода часы имеют большую толщину и вес. Отсюда вытекают и другие неудобства, связанные с «автоматикой»». В частности, ограниченные возможности использования в женских моделях, более высокая стоимость из-за применения в роторе дорогих сплавов, более низкая ударопрочность. Погрешность хода в таких моделях составляет +/- 2-4 минуты в месяц.
Кварц: суперточный механизм
Кварцевые модели в мире часов явление относительно недавнее, поскольку первые часы с кварцевым механизмом (модель Seiko 35SQ «Quartz Astron») поступили в продажу в 1969 году.
Начинка кварцевых часов включает в себя элемент питания (батарейка), электронный блок и пошаговый электродвигатель. Основу электронного блока составляет кристалл кварца, помещенный в герметичную капсулу. Получая импульс от батарейки, кварцевый кристалл начинает колебаться с частотой 32 768 Гц, создавая собственный электрический разряд. Этот импульс, многократно увеличенный распределительным блоком, передается пошаговому двигателю, который приводит в движение колесную передачу и стрелки на часах. Нетрудно заметить, что функция кристалла кварца в кварцевых часах аналогична роли баланса в часах механических. Только в отличие от баланса кристалл кварца колеблется быстро и равномерно, что обеспечивает кварцевым часам точность хода на порядок выше, чем в механических моделях.
О необычных свойствах кварца стало известно еще в 1880 году. Тогда французские ученые Пьер и Жак Кюри экспериментировали со свойствами серии кристаллов, среди которых были турмалин и кварц. В ходе экспериментов братья Кюри заметили, что кристаллы, изменяя форму при нагреве или охлаждении, создают на своих гранях электрическое поле с разноименными зарядами. Это уникальное свойство получило название пьезоэлектрический эффект. Через год французы обнаружили и доказали наличие у кварца обратного по эффекту свойства: созданное вокруг кристалла поле заставляло его сжиматься. Именно эти частые и равномерные колебания кварцевого кристалла обеспечивают кварцевым часам высокую точность хода, делая их популярными во всем мире.
Неудивительно, что в свое время кварцевые часы произвели настоящую часовую революцию, заставив благородную механику на несколько десятилетий уйти в тень. Кварц точнее, удобнее и в большинстве случаев обходится в разы дешевле, чем элитные модели швейцарских механических часов, стоимость которых исчисляется десятками, а то и сотнями тысяч евро. Будучи по сути миниатюрным компьютером, кварцевые часы позволяют программировать свою микросхему таким образом, что обычный аксессуар для измерения времени превращается в суперустройство со множеством полезных функций и рост цены при этом некритичен. Погрешность хода в часах с кварцевым механизмом составляет в среднем +/–20 секунд в месяц. Кстати, отличить кварцевые часы от механических можно даже по внешнему виду: секундная стрелка в механике движется плавно, тогда как в кварцевых часах идет по циферблату скачками.
Кварцевые часы проще механических в эксплуатации. Они не требуют подзавода и питаются от простой батарейки. В случае износа батарейки, ресурса которой хватает на срок до 3 лет, достаточно просто произвести ее замену. Еще один плюс кварца – бóльшая устойчивость к ударам по сравнению с механикой. Кварцевые часы – вариант для тех, кому не нужно «держать марку», приобретая дорогие аксессуары или для тех, кто не желает отвлекаться на такие рутинные занятия, как подзавод механизма.
Гибридные механизмы: удобство и практичность
Тем, кому даже замена батарейки в кварцевых часах в тягость, современная часовая индустрия предложила часы с гибридными механизмами. Такие механизмы используют в работе все преимущества кварца, но при этом питаются не от батарейки, а от некоего внешнего источника энергии.
В 1998 году Seiko выпустила модель Kinetic Auto Relay, в которой к плюсам вышеописанной технологии добавился энергосберегающий режим. Если в течение 72 часов механизм модели не получает подпитки от движений запястья ее хозяина, система автоматически переходит в «спящий» режим. При этом на фоне остановки стрелок спящие часы продолжают свою обычную работу и как только хозяин берет их в руки, «просыпаются», автоматически выставляя точное время. Ручная настройка здесь потребуется только для указателя даты.
Ремарка: в режиме экономии энергии часы продолжают точный отсчет времени в течение 4 лет, при условии наличия достаточного заряда перед переходом в «спящее» состояние.
В 1995 году компания Citizen предложила свой вариант кварцевых часов, не зависящих от ненадежных батареек. Технология под названием Eco-Drive в качестве источника необходимой для работы часов энергии использует солнечный свет.
В первых моделях серии циферблат часов выступал в роли фотоэлемента, который позволял генератору накапливать заряд энергии, когда на циферблат падали лучи солнца. В дальнейшем Citizen выпустила часы, в которых функцию фотоэлемента выполняли тончайшие нити на внутренней стороне стекла циферблата (модели Eco-Drive Vitro), а также модели, в которых солнечный свет для подзарядки механизма улавливал не весь циферблат, а только расположенное вокруг него пленочное кольцо.
Ремарка: первые часы, работающие на солнечной батарее, Citizen выпустила еще в 1976 году. Видимо, в то время новаторская концепция не получила широкого распространения.
В числе современных швейцарских производителей, использующих солнечный свет как альтернативный источник энергии, можно назвать компанию Tissot, предложившую покупателю тактильные часы на солнечных батареях.
С ростом качества жизни растут и требования человека, ко всему, что его окружает. Сегодня нам недостаточно просто узнавать по часам точное время. Эту функцию берут на себя и многочисленные гаджеты, и даже бытовая техника, которая оборудуется встроенными таймерами. Конкуренцию классическим наручным часам активно составляют так называемые умные часы, которые, помимо отображения времени, предлагают своему хозяину массу дополнительных функций. К примеру, следят за его здоровьем, сообщают информацию о погоде, частично заменяют телефон и даже банковскую карту. Какое место займут smart watch в швейцарской часовой индустрии, покажет время, но судя по тому, что швейцарские производители не спешат перенять повальную моду на умные часы, становится ясно, что современные технологии вряд ли перетянут на свою сторону почитателей часового искусства с его многовековой историей. Для тех, кого все же заинтересовали умные часы, отметим, что smart watch швейцарского производства предлагает покупателю компания Tag Heuer, которая в ноябре 2015 года официально представила умную модель Tag Heuer Connected.
Выбор типа часового механизма зависит от множества факторов, и если во главе этого списка можно поставить цену (в случае с кварцевыми моделями это может быть всего несколько десятков евро), то закончить его стоит вопросами престижа. В последнем случае механика традиционно удерживает пальму первенства и в среде знатоков определяется, как часы, созданные по всем правилам часового искусства. Кварцу при этом отводится роль этакого примитивного компьютера с функцией отображения времени.
Другие условия выбора, как правило, диктует ситуация. Для активных занятий спортом, во время которых всегда есть риск ударить часы или подвергнуть их резким перепадам температуры, больше подойдет термостойкий и ударопрочный кварц. Сфера делового общения подразумевает, что все, что входит в ваш образ, должно иметь определенный статус. В качестве «костюмного» варианта комильфо выбирать механику в классическом стиле. Вопрос только в том, какую? Механические часы с ручным подзаводом, как правило, тоньше любой автоматики, потому что не требуют дополнительного пространства для установки ротора. Зато модели с автоподзаводом не потребуют от вас почти армейской дисциплины, необходимой для каждодневного методичного завода «ручной» механики. Так или иначе, выбор за вами.
Фото 1 – башенные часы в г. Зиммере, Бельгия
Когда появились механические часы?
Фото 2 – старинные механические часы
Первое упоминание о механизме отсчета времени найдено в византийском манускрипте конца VI века. В Китае в VIII веке изобретали механические конструкции, повышающие точность хода часов. В Европе первые механические часы появились в IX веке во Франции.
Принцип работы механических часов
Часовые механизмы древности работали по принципу равномерного поворота деревянного вала, на который насажено зубчатое колесо и накручен канат с грузом. Канат опускался под тяжестью груза, зубцы колеса вала, сцепленные с передаточным колесом, приводили в движение стрелки циферблата.
Большие механические часы.
Энергия движущегося вниз груза была основой первых башенных часов. Количество зубьев на колесах рассчитывали так, чтобы полный круг часового колеса отмерял один час времени. Необходимым условием работы механизма было непрерывное поднятие груза вверх после разматывания каната.
Так были устроены башенные часы королевского дворца в Париже в 1370 году. Конструкция часового мастера де Вита имела общую высоту более 10 м. Канат с гирей 200 кг равномерно опускался, отмеряя 24 часа.
Фото 6 – голландский физик Гюйгенс с конструкцией часового механизма.
Открытие закона постоянства колебания маятника ученым Галилео Галилеем в 16 веке пригодилось для совершенствования часового механизма. В 1657 году голландский физик Гюйгенс впервые применил маятник как регулятор точности часов. Ему удалось уменьшить погрешность часов до 10 сек.
Фото 8 – фрагмент Староместских часов.
Башенные часы на Староместской площади в Праге действуют до настоящего времени. Шедевр чешских мастеров поражает театральным представлением каждого часа. Из двух окошек над циферблатом выезжают двенадцать апостолов. Вступают в действие фигуры Смерти и людей, наглядно показывая суетность бытия и роковую неизбежность жизненного конца. Бой часов заканчивается криком петуха и завершающим благословением фигуры Христа.
Фото 9 – часы конгресса Вашингтон.
Переход к наручным часам символа состоятельности владельца произошел в 1500 году.
В Германии изобрели пружинный маятник из закаленной стальной, гибкой ленты.
Фото 11 – часы «Катящийся шар», 1808 год. Английский мастер Уильям Конгрив вместо маятника применил шарик, катящийся по канавкам плоскости. Доходя до конца, шарик перевешивает платформу и движется в обратную сторону.
Результатом стало революционное изменение конструкций, широкий набор функциональных свойств часов.
Фото 12 – часы мастера Томаса Томпиона,1690 год.
Английский часовой мастер Томас Томпион по чертежам Роберта Гука изготовил часы нового поколения для короля Карла II.
Фото 13 – карманные часы.
XVII век принес новый виток совершенствования часового дела.
Прорывом в часовом деле в XVII веке стало применение спирального балансира. Это повысило точность хода часов, открыло возможность совмещения часовой, минутной, секундной стрелок на одном циферблате. Значительно уменьшились размеры механизма. Появились удобные в пользовании карманные часы.
Фото 14 – наручные часы – браслет. Австрия, 19 век.
Идея приспособить их к руке пришла мастеру Пьеру Жаку Дро в 1790 году. Он прикрепил корпус к кожаному ремешку, решив сразу две проблемы:
Фото 15 – часы мастера Луи Бреге по заказу королевы Неаполитанской. 1810 г.
В 1810 году часовой мастер Луи Бреге изготовил миниатюрные богато украшенные наручные часы для королевы Неаполитанской.
Наручные часы как украшение и чисто женская принадлежность появились в 1911 году.
Мужчины обратили внимание на этот аксессуар благодаря бразильскому воздухоплавателю Альберто Сантос-Дюмону.
Фото 16 – первые мужские наручные часы Картье серии «Santos».
В 1901 году Луи Картье создал для него модель «Santos». А признание и массовое «внедрение» в обиход джентльменов часы получили после Первой Мировой войны.
Механические часы – подарки
Механические часы быстро завоевали популярность среди европейских королевских домов.
Они стали желанными подношениями, предметом восхищения, завораживали миниатюрностью механизма, ошеломляющими функциональными возможностями, оригинальностью украшений.
Уникальные часы «Павлин» мастера Джеймса Кокса были куплены Потемкиным как подарок императрице Екатерины II.
Каждый час разыгрывался целый спектакль, который начинался с «пробуждения» совы. Она непрерывно двигала головой, лапками, вращала глазами под мелодичный звон колокольчиков. Царственный павлин наклонял головку и распускал хвост, символизирующий лучи солнца. Птица медленно поворачивалась вокруг оси. С этого ракурса серебряная поверхность перьев являла собой ночь. Церемония завершалась криком петуха.
Фото 18 – в прорези шляпки гриба поворачивался часовой диск с цифрами
А время отсчитывали цифры на прорези шляпки самого большого гриба. Вот такой сюрприз.
Каминные часы метр высотой метр были изготовлены в мастерской знаменитого ювелира Карла Фаберже, датируемые 1891 годом.
Фото 19 – каминные часы ювелира Карла Фаберже, 1891 год.
Этот потрясающий подарок от членов царской семьи был заказан к двадцатипятилетнему свадебному юбилею императора Александра III.
Карманные часы были подарены певцу Федору Шаляпину императором Николаем II.
Самые необычные в мире – часы русских умельцев.
Фото 21 – часы с деревянным механизмом умельцев из династии Бронниковых.
Вызывают восторг действующие абсолютно уникальные часы с деревянным механизмом русских умельцев из династии Бронниковых. Каждый элемент конструкции выполнен из разных пород древесины. Стрелочки, циферблат выточены из красного дерева или самшита, оси – из бамбука, корпус и шестеренки – из березы. Часы не имеют мировых аналогов.