зачем в физике используют модели
Физическая модель (моделирование)
Физические модели используют эффект масштаба в случае возможности пропорционального применения всего комплекса изучаемых свойств.
Физическая модель представляет собой аналоговую модель, в которой между параметрами объекта и модели одинаковой физической природы существует однозначное соответствие. В этом случае элементам системы ставятся в соответствие физические эквиваленты, воспроизводящие структуру, основные свойства и соотношения изучаемого объекта. При физическом моделировании, основой которого является теория подобия, сохраняются особенности проведения эксперимента в натуре с соблюдением оптимального диапазона изменения соответствующих физических параметров.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Компьютерная модель (англ. computer model), или численная модель (англ. computational model) — компьютерная программа, работающая на отдельном компьютере, суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая представление объекта, системы или понятия в форме, отличной от реальной, но приближенной к алгоритмическому описанию, включающей и набор данных, характеризующих свойства системы и динамику их изменения со временем.
Распределённые системы в физике — термин, обычно применяемый к колебательным системам, также сплошные колебательные системы — физические системы, динамические характеристики которых (например, масса и упругость в механических системах, индуктивность и ёмкость в электрических) не сосредоточены (только) в точечных элементах (не приложены только к точечным элементам), а распределены тем или иным образом непрерывно по пространству (конечным или бесконечным областям пространства), поверхностям, линиям.
Методы прогнозирования в экономике — это совокупность научных методик, которые используются специалистами для разработки оптимальных алгоритмов дальнейшего развития различных сфер экономики каждого конкретного государства или мировой экономики в целом.
Физические модели – примеры в механике, определение
Физика изучает самые общие свойства Природы, устанавливая правила и законы, по которым происходят всевозможные процессы и явления. При этом практически всегда используется прием, называемый физическим моделированием. Рассмотрим суть этого приема подробнее, дадим определение физической модели.
Необходимость упрощения
Рассматривая любое физическое явление, можно всегда заметить, что среди множества характеристик реального объекта существуют как важные для текущей практической задачи, так и второстепенные, не влияющие на нее.
Рис. 1. Явления, изучаемые физикой.
Например, если стоит практическая задача взвешивания груза, она решается с помощью весов, которые могут иметь самые различные принципы и конструкции. Точное описание процесса, происходящего при простейшем взвешивании, может включать огромное количество всевозможных характеристик и закономерностей, начиная от макроскопических (например, форму, которую имеют весы), и заканчивая микроскопическими (например, точным химическим составом частей весов).
Однако, для поставленной задачи большая часть этих параметров являются несущественными. Решение задачи требует, чтобы взвешиваемая масса была равна заданной (это важный параметр в данном случае), а какую форму имеют весы, и каков точный химический состав сплава, из которого они сделаны – для решения не играет роли (это второстепенные и неважные параметры).
Точно так же, в любом физическом процессе и явлении можно выделить огромное множество характеристик, но важными для поставленной задачи будут являться далеко не все. И при физическом описании разумно всегда использовать минимум необходимых параметров.
Здесь действует важная философская концепция, называемая «Бритвой Оккама». Она гласит, что из всех теорий, правильно описывающих явление, следует отдавать предпочтение более простой.
Рис. 2. Принцип бритвы Оккама.
Физическая модель
Применение принципа упрощения наиболее ярко проявляется в использовании специальных объектов, называемых «физическими моделями».
Физическая модель – это некоторое описание реального явления, в котором участвует минимум параметров, необходимых для правильного описания явления и правильного решения поставленных задач.
Хорошим примером физической модели является понятие «материальной точки». Данное понятие используется в механике для описания движения и взаимодействия тел. Материальная точка имеет некоторые координаты в выбранной Системе Отсчета и некоторую массу. При этом, как и геометрическая точка, она не имеет ни формы, ни объема, ни ориентации в пространстве. Все понимают, что в Природе нет объектов, которые бы не имели формы, объема и ориентации, но при этом еще бы и имели некоторую массу. Однако, для описания движения и взаимодействия тел во многих случаях все эти характеристики реальных тел неважны. В кинематике изучается только движение и координаты тела. В динамике и статике также важна масса тела. Остальные параметры для законов движения практически всегда не важны.
В итоге в механике модель «материальная точка» используется в большинстве случаев.
В других областях физики используются другие модели. Например, в термодинамике такой моделью является идеальный газ. В электродинамике – идеальные проводники и диэлектрики. В оптике – абсолютно черное тело.
Рис. 3. Физические модели.
Что мы узнали?
В описании любого физического явления существуют важные и неважные для решения поставленной задачи характеристики. Исходя из философского принципа «Бритва Оккама», следует строить теории так, чтобы они использовали достаточный минимум характеристик. Такое описание явления, содержащее только характеристики, необходимые для решения задачи, называется физической моделью явления.
Зачем в физике используют модели
Реальные движения тел порой так сложны, что при их изучении необходимо постараться пренебречь несущественными для рассмотрения деталями. С этой целью в физике прибегают к моделированию, т. е. к составлению упрощённой схемы (модели) явления, позволяющей понять его основную суть, не отвлекаясь на второстепенные обстоятельства. Среди общепринятых физических моделей важную роль в механике играют модель материальной точки и модель абсолютно твёрдого тела.
Материальная точка – это тело, геометрическими размерами которого в условиях задачи можно пренебречь и считать, что вся масса тела сосредоточена в геометрической точке.
Абсолютно твёрдое тело (просто твёрдое тело) – это система, состоящая из совокупности материальных точек, расстояния между которыми в условиях задачи можно считать неизменными.
Модель материальной точки применима прежде всего в случаях, когда размеры тела много меньше других характерных размеров в условиях конкретной задачи. Например, можно пренебречь размерами искусственного спутника по сравнению с расстоянием до Земли и рассматривать спутник как материальную точку. Это – верно! Но вместе с тем не стоит ограничиваться лишь подобными случаями.
Дело в том, что сложное движение реального тела можно «разложить» на два простых вида движения: поступательное и вращательное (см. Задание №1). Если при сложном движении заменить тело материальной точкой, то мы исключим из рассмотрения вращение тела, т. к. говорить о вращении точки вокруг самой себя бессмысленно (точка не имеет геометрических размеров). Следовательно, заменив тело материальной точкой при сложном движении, мы допустим ошибку. Однако часто в случаях, когда тело движется поступательно, не вращаясь, его можно считать материальной точкой независимо от размеров, формы и пройденного им пути.
Модель абсолютно твёрдого тела можно применять, когда в условиях рассматриваемой задачи деформации реального тела пренебрежимо малы. Так, например, в задании, посвящённом вопросам статики (Задание №4), мы будем изучать условия равновесия твёрдого тела и при решении задач часто применять указанную модель. Вместе с тем, данная модель неуместна, если суть задачи состоит, например, в изучении деформаций тела в результате тех или иных воздействий в процессе его движения или в состоянии покоя.
Таким образом, мы будем изучать механическое движение не самих реальных тел, а упомянутых выше моделей. Из них основной и наиболее употребимой для нас станет модель материальной точки. В то же время там, где это необходимо, мы будем ради наглядности изображать на рисунках тела не в виде точек, а в виде объектов, геометрические размеры которых не равны нулю.
Физические модели
Всего получено оценок: 266.
Всего получено оценок: 266.
Физика изучает самые общие свойства Природы, устанавливая правила и законы, по которым происходят всевозможные процессы и явления. При этом практически всегда используется прием, называемый физическим моделированием. Рассмотрим суть этого приема подробнее, дадим определение физической модели.
Необходимость упрощения
Рассматривая любое физическое явление, можно всегда заметить, что среди множества характеристик реального объекта существуют как важные для текущей практической задачи, так и второстепенные, не влияющие на нее.
Рис. 1. Явления, изучаемые физикой.
Например, если стоит практическая задача взвешивания груза, она решается с помощью весов, которые могут иметь самые различные принципы и конструкции. Точное описание процесса, происходящего при простейшем взвешивании, может включать огромное количество всевозможных характеристик и закономерностей, начиная от макроскопических (например, форму, которую имеют весы), и заканчивая микроскопическими (например, точным химическим составом частей весов).
Однако, для поставленной задачи большая часть этих параметров являются несущественными. Решение задачи требует, чтобы взвешиваемая масса была равна заданной (это важный параметр в данном случае), а какую форму имеют весы, и каков точный химический состав сплава, из которого они сделаны – для решения не играет роли (это второстепенные и неважные параметры).
Точно так же, в любом физическом процессе и явлении можно выделить огромное множество характеристик, но важными для поставленной задачи будут являться далеко не все. И при физическом описании разумно всегда использовать минимум необходимых параметров.
Здесь действует важная философская концепция, называемая «Бритвой Оккама». Она гласит, что из всех теорий, правильно описывающих явление, следует отдавать предпочтение более простой.
Физическая модель
Применение принципа упрощения наиболее ярко проявляется в использовании специальных объектов, называемых «физическими моделями».
Физическая модель – это некоторое описание реального явления, в котором участвует минимум параметров, необходимых для правильного описания явления и правильного решения поставленных задач.
Хорошим примером физической модели является понятие «материальной точки». Данное понятие используется в механике для описания движения и взаимодействия тел. Материальная точка имеет некоторые координаты в выбранной Системе Отсчета и некоторую массу. При этом, как и геометрическая точка, она не имеет ни формы, ни объема, ни ориентации в пространстве. Все понимают, что в Природе нет объектов, которые бы не имели формы, объема и ориентации, но при этом еще бы и имели некоторую массу. Однако, для описания движения и взаимодействия тел во многих случаях все эти характеристики реальных тел неважны. В кинематике изучается только движение и координаты тела. В динамике и статике также важна масса тела. Остальные параметры для законов движения практически всегда не важны.
В итоге в механике модель «материальная точка» используется в большинстве случаев.
В других областях физики используются другие модели. Например, в термодинамике такой моделью является идеальный газ. В электродинамике – идеальные проводники и диэлектрики. В оптике – абсолютно черное тело.
Рис. 3. Физические модели.
Что мы узнали?
В описании любого физического явления существуют важные и неважные для решения поставленной задачи характеристики. Исходя из философского принципа «Бритва Оккама», следует строить теории так, чтобы они использовали достаточный минимум характеристик. Такое описание явления, содержащее только характеристики, необходимые для решения задачи, называется физической моделью явления.
Зачем в физике используют модели
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Добавить в закладки
Вы сможете увидеть эту публикацию в личном кабинете
Подпишитесь на нашу рассылку и получайте новости о последних проектах, мероприятиях и материалах ПостНауки