для связи локальной сети с интернетом необходимо такое устройство как
Сети для начинающего IT-специалиста. Обязательная база
Примерно 80% из нас, кто заканчивает университет с какой-либо IT-специальностью, в итоге не становится программистом. Многие устраиваются в техническую поддержку, системными администраторами, мастерами по наладке компьютерных устройств, консультантами-продавцами цифровой техники, менеджерами в it-сферу и так далее.
Эта статья как раз для таких 80%, кто только закончил университет с какой-либо IT-специальностью и уже начал мониторить вакансии, например, на должность системного администратора или его помощника, либо выездного инженера в аутсорсинговую фирму, либо в техническую поддержку 1-й/2-й линии.
А также для самостоятельного изучения или для обучения новых сотрудников.
За время своей трудовой деятельности в сфере IT я столкнулся с такой проблемой, что в университетах не дают самую основную базу касательно сетей. С этим я столкнулся сначала сам, когда, после окончания университета, ходил по собеседованиям в 2016 году и не мог ответить на простые (как мне сейчас кажется) вопросы. Тогда мне конечно показалось, что это я прохалтурил и не доучил в университете. Но как оказалось дело в образовательной программе. Так как сейчас, я также сталкиваюсь с данным пробелом знаний, когда обучаю новых сотрудников.
И что тогда, мне пришлось изучить множество статей в интернете, прежде чем я понял базовые моменты, и что сейчас, задавая молодым специалистам темы для изучения, они с трудом находят и усваивают необходимое. Это происходит по причине того, что в Интернете огромное количество статей и все они разрозненны по темам, либо написаны слишком сложным языком. Плюс большинство информации в начале своих статей содержат в основном просто научные определения, а дальше сразу сложные технологии использования. В итоге получается много того, что для начинающего пока совсем непонятно.
Именно поэтому я решил собрать основные темы в одну статью и объяснить их как можно проще «на пальцах».
Сразу предупреждаю, что никакой углубленной информации в статье не будет, только исключительно самая база и самое основное.
Темы, которые рассмотрены:
1. Глобальные и Локальные сети
Вся интернет сеть подразделяется на глобальную (WAN) и локальную (LAN).
Все пользовательские устройства в рамках одной квартиры или офиса или даже здания (компьютеры, смартфоны, принтеры/МФУ, телевизоры и т.д.) подключаются к роутеру, который объединяет их в локальную сеть.
Участники одной локальной сети могут обмениваться данными между своими устройствами без подключения к интернет провайдеру. А вот чтобы выйти в сеть (например, выйти в поисковик Яндекс или Google, зайти в VK, Instagram, YouTube или AmoCRM) необходим доступ к глобальной сети.
Выход в глобальную сеть обеспечивает интернет провайдер, за что мы и платим ему абонентскую плату. Провайдер устанавливает на своих роутерах уровень скорости для каждого подключения в соответствии с тарифом. Провайдер прокидывает нам витую пару или оптику до нашего роутера (нашей локальной сети) и после этого любое устройства нашей локальной сети может выходить в глобальную сеть.
Для аналогии, сети, можно сравнить с дорогами.
Например, дороги вашего города N это локальная сеть. Эти дороги соединяют вас с магазинами, учреждениями, парками и другими местами вашего города.
Чтобы попасть в другой город N вам необходимо выехать на федеральную трассу и проехать некоторое количество километров. То есть выйти в глобальную сеть.
Для более наглядного представления, что такое глобальная и локальная сеть я нарисовал схематичный рисунок.
2. Белые и серые IP-адреса
Каждое устройство в сети имеет свой уникальный IP-адрес. Он нужен для того, чтобы устройства сети понимали куда необходимо направить запрос и ответ.
Это также как и наши дома и квартиры имеют свой точный адрес (индекс, город, улица, № дома, № квартиры).
В рамках вашей локальной сети (квартиры, офиса или здания) есть свой диапазон уникальных адресов. Я думаю многие замечали, что ip-адрес компьютера, например, начинается с цифр 192.168.X.X
Так вот это локальный адрес вашего устройства.
Существуют разрешенные диапазоны локальных сетей:
Думаю из представленной таблицы сразу становится понятно почему самый распространенный диапазон это 192.168.X.X
Чтобы узнать, например, ip-адрес своего компьютера (на базе ос windows), наберите в терминале команду ipconfig
Как видите, ip-адрес моего компьютера в моей домашней локальной сети 192.168.88.251
Для выхода в глобальные сети, ваш локальный ip-адрес подменяется роутером на глобальный, который вам выдал провайдер. Глобальные ip-адреса не попадают под диапазоны из таблички выше.
Так вот локальные ip-адреса — это серые ip-адреса, а глобальные — это белые.
Для большего понимания рассмотрите схему ниже. На ней я подписал каждое устройство своим ip-адресом.
На схеме видно, что провайдер выпускает нас в глобальные сети (в интернет) с белого ip-адреса 91.132.25.108
Для нашего роутера провайдер выдал серый ip-адрес 172.17.135.11
И в нашей локальной сети все устройства соответственно тоже имеют серые ip-адреса 192.168.Х.Х
Узнать под каким ip-адресом вы выходите в глобальную сеть можно на сайте 2ip.ru
Но из всего этого стоит помнить один очень важный фактор!
В настоящее время обострилась проблема нехватки белых ip-адресов, так как число сетевых устройств давно превысило количество доступных ip. И по этой причине интернет провайдеры выдают пользователям серые ip-адреса (в рамках локальной сети провайдера, например в пределах нескольких многоквартирных домов) и выпускают в глобальную сеть под одним общим белым ip-адресом.
Чтобы узнать серый ip-адрес выдает вам провайдер или белый, можно зайти к себе на роутер и посмотреть там, какой ip-адрес получает ваш роутер от провайдера.
Например я на своем домашнем роутере вижу серый ip-адрес 172.17.132.2 (см. диапазаон локальных адресов). Для подключения белого ip-адреса провайдеры обычно предоставляют доп. услугу с абон. платой.
На самом деле, для домашнего интернета это совсем не критично. А вот для офисов компаний рекомендуется покупать у провайдера именно белый ip-адрес, так как использование серого ip-адреса влечет за собой проблемы с работой ip-телефонии, а также не будет возможности настроить удаленное подключение по VPN. То есть серый ip-адрес не позволит вам вывести в интернет ваш настроенный сервер и не позволит настроить удаленное подключение на сервер из другой сети.
3. NAT
В предыдущем разделе я отметил, что “в настоящее время обострилась проблема нехватки белых ip-адресов” и поэтому распространенная схема подключения у интернет провайдеров сейчас, это подключать множество клиентов серыми ip-адресами, а в глобальный интернет выпускать их под одним общим белым ip.
Но так было не всегда, изначально всем выдавались белые ip-адреса, и вскоре, чтобы избежать проблему дефицита белых ip-адресов, как раз и был придуман NAT (Network Address Translation) — механизм преобразования ip-адресов.
NAT работает на всех роутерах и позволяет нам из локальной сети выходить в глобальную.
Для лучшего понимания разберем два примера:
1. Первый случай: у вас куплен белый ip-адрес 91.105.8.10 и в локальной сети подключено несколько устройств.
Каждое локальное устройство имеет свой серый ip-адрес. Но выход в интернет возможен только с белого ip-адреса.
Следовательно когда, например, ПК1 с ip-адресом 192.168.1.3 решил зайти в поисковик Яндекса, то роутер, выпуская запрос ПК1 в глобальную сеть, подключает механизм NAT, который преобразует ip-адрес ПК1 в белый глобальный ip-адрес 91.105.8.10
Также и в обратную сторону, когда роутер получит от сервера Яндекса ответ, он с помощью механизма NAT направит этот ответ на ip-адрес 192.168.1.3, по которому подключен ПК1.
2. Второй случай: у вас также в локальной сети подключено несколько устройств, но вы не покупали белый ip-адрес у интернет провайдера.
В этом случае локальный адрес ПК1(192.168.1.3) сначала преобразуется NAT‘ом вашего роутера и превращается в серый ip-адрес 172.17.115.3, который вам выдал интернет-провайдер, а далее ваш серый ip-адрес преобразуется NAT’ом роутера провайдера в белый ip-адрес 91.105.108.10, и только после этого осуществляется выход в интернет (глобальную сеть).
То есть, в этом случае получается, что ваши устройства находятся за двойным NAT’ом.
Такая схема имеет более высокую степень безопасности ваших устройств, но также и имеет ряд больших минусов. Например, нестабильная sip-регистрация VoIP оборудования или односторонняя слышимость при звонках по ip-телефонии.
Более подробно о работе механизма NAT, о его плюсах и минусах, о выделении портов, о сокетах и о видах NAT я напишу отдельную статью.
4. DHCP — сервер и подсети
Чтобы подключить устройство, например, компьютер к интернету вы обычно просто подключаете провод (витую пару) в компьютер и далее в свободный порт на роутере, после чего компьютер автоматически получает ip-адрес и появляется выход в интернет.
Также и с Wi-Fi, например со смартфона или ноутбука, вы подключаетесь к нужной вам сети, вводите пароль, устройство получает ip-адрес и у вас появляется интернет.
А что позволяет устройству получить локальный ip-адрес автоматически?
Эту функцию выполняет DHCP-сервер.
Каждый роутер оснащен DHCP-сервером. IP-адреса, полученные автоматически являются динамическими ip-адресами.
Потому что, при каждом новом подключении или перезагрузки роутера, DHCP-сервер тоже перезагружается и может выдать устройствам разные ip-адреса.
То есть, например, сейчас у вашего компьютера ip-адрес 192.168.1.10, после перезагрузки роутера ip-адрес компьютера может стать 192.168.1.35
Чтобы ip-адрес не менялся, его можно задать статически. Это можно сделать, как на компьютере в настройках сети, так и на самом роутере.
А также, DHCP-сервер на роутере вообще можно отключить и задавать ip-адреса вручную.
Можно настроить несколько DHCP-серверов на одном роутере. Тогда локальная сеть разделится на подсети.
Например, компьютеры подключим к нулевой подсети в диапазон 192.168.0.2-192.168.0.255, принтеры к первой подсети в диапазон 192.168.1.2-192.168.1.255, а Wi-Fi будем раздавать на пятую подсеть с диапазоном 192.168.5.2-192.168.5.255 (см. схему ниже)
Обычно, разграничение по подсетям производить нет необходимости. Это делают, когда в компании большое количество устройств, подключаемых к сети и при настройке сетевой безопасности.
Но такая схема в компаниях встречается довольно часто.
Поэтому обязательно нужно знать очень важный момент.
Внимание!
Если вам необходимо с ПК зайти на web-интерфейс, например, принтера или ip-телефона и при этом ваш ПК находится в другой подсети, то подключиться не получится.
Для понимания разберем пример:
Допустим вы работаете за ПК1 с локальным ip-адресом 10.10.5.2 и хотите зайти на web-интерфейс ip-телефона с локальным ip-адресом 192.168.1.3, то подключиться не получится. Так как устройства находятся в разных подсетях. К ip-телефона, находящиеся в подсети 192.168.1.X, можно подключиться только с ПК3 (192.168.1.5).
Также и к МФУ (172.17.17.10) вы сможете подключиться только с ПК4 (172.17.17.12).
Поэтому, когда подключаетесь удаленно к пользователю на ПК, чтобы зайти на web-интерфейс ip-телефона, то обязательно сначала сверяйте их локальные ip-адреса, чтобы убедиться, что оба устройства подключены к одной подсети.
5. Устройства маршрутизации сети (маршрутизатор, коммутатор, свитч, хаб)
Как ни странно, но есть такой факт, что новички в IT (иногда и уже действующие сис.админы) не знают или путают такие понятия как маршрутизатор, коммутатор, свитч, сетевой шлюз и хаб.
Я думаю, причина такой путаницы возникла из-за того, что наплодили синонимов и жаргонизмов в названиях сетевого оборудования и это теперь вводит в заблуждение многих начинающих инженеров.
а) Роутер, маршрутизатор и сетевой шлюз
Все знают что такое роутер. Что это именно то устройство, которое раздает в помещении интернет, подключенный от интернет провайдера.
Так вот маршрутизатор и сетевой шлюз это и есть роутер.
Данное оборудование является основным устройством в организации сети. В инженерной среде наиболее используемое название это “маршрутизатор”.
Кстати маршрутизатором может быть не только приставка, но и системный блок компьютера, если установить туда еще одну сетевую карту и накатить, например, RouterOS Mikrotik. Далее разрулить сеть на множество устройств с помощью свитча.
б) Что такое Свитч и чем он отличается от Коммутатора и Хаба
Свитч и Коммутатор это тоже синонимы. А вот хаб немного другое устройство. О нем в следующем пункте (в).
Коммутатор (свитч) служит для разветвления локальной сети. Как тройник или сетевой фильтр, куда мы подключаем свои устройства, чтобы запитать их электричеством от одной розетки.
Коммутатор не умеет маршрутизировать сеть как роутер. Он не выдаст вашему устройству ip-адрес и без помощи роутера не сможет выпустить вас в интернет.
У стандартного маршрутизатора обычно 4-5 портов для подключения устройств. Соответственно, если ваши устройства подключаются проводами и их больше чем портов на роутере, то вам необходим свитч. Можно к одному порту роутера подключить свитч на 24 порта и спокойно организовать локальную сеть на 24 устройства.
А если у вас завалялся еще один роутер, то можно в его web-интерфейсе включить режим коммутатора и тоже использовать как свитч.
в) Хаб
Хаб выполняет те же функции, что и коммутатор. Но его технология распределения сильно деревянная и уже устарела.
Хаб раздает приходящие от роутера пакеты всем подключенным устройствам без разбора, а устройства уже сами должны разбираться их это пакет или нет.
А коммутатор имеет MAC таблицу и поэтому распределяет приходящие пакеты на одно конкретное устройство, которое и запрашивало этот пакет. Следовательно передача данных коммутатором быстрее и эффективнее.
В настоящее время уже редко где встретишь использование хаба, но всё таки они попадаются, нужно быть к этому готовым и обязательно рекомендовать пользователю замену хаба на свитч.
6. Основные команды для анализа сети
а) Команда Ping
Чтобы понять активен ли ip-адрес или само устройство, можно его “пропинговать”.
Для этого в командной строке пишем команду ping “ip-адрес”.
Здесь мы “пинганули” dns сервер google и, как видим, сервер активен (отклик на пинги есть и равен 83 мс).
Если адресат недоступен или данный ip-адрес не существует, то мы увидим такую картину:
То есть ответа на пинги не получаем.
Соответственно ключ “-а” нам показал, что имя пингуемого узла “dns.google”.
А благодаря ключу “-t” ping шел без остановки, я остановил его, нажав Ctrl+C.
При непрерывном пинге можно увидеть адекватно ли ведет себя пингуемый узел и примерное качество работы интернет канала.
Как видим из скриншота, периодически возникают задержки приема пакета аж до 418 мс, это довольно критичное значение, так как скачок с 83 мс до 418 мс отразился бы на видеосвязи торможением/зависанием изображения или в ip-телефонии деградацией качества голоса.
В моем случае, скорей всего штормит мой домашний Интернет.
Но чтобы более детально установить причину, это нужно запускать dump. А это тема для целой статьи.
Внимание! Иногда на роутерах отключена отправка ICMP пакетов (кто-то отключает специально, а где-то не включена по умолчанию), в таком случае на «пинги» такой узел отвечать не будет, хотя сам будет активен и нормально функционировать в сети.
Еще одна возможность “пинга” это узнать какой ip-адрес скрывается за доменом сайта. А именно, на каком сервере установлен хост сайта.
Для этого просто вместо ip-адреса пишем сайт:
Как видите, у хабра ip-адрес 178.248.237.68
б) Трассировка
Иногда очень важно увидеть каким путем идет пакет до определенного устройства.
Возможно где-то есть пробоина и пакет не доходит до адресата. Так вот утилита трассировки помогает определить на каком этапе этот пакет застревает.
На ОС Windows эта утилита вызывается командой “tracert” ip-адрес или домен:
Здесь мы увидели через какие узлы проходит наш запрос, прежде чем дойдет до сервера ya.ru
На ОС Linux эта утилита вызывается командой traceroute.
Утилитой трассировки также и обладают некоторые устройства, маршрутизаторы или голосовые VoIP шлюзы.
в) Утилита whois
Данная утилита позволяет узнать всю информацию об ip-адресе или о регистраторе домена.
Например, проверим ip-адрес 145.255.1.71. Для этого ввожу в терминале команду whois 145.255.1.71
Получили информацию о провайдере ip-адреса, страну, город, адрес, диапазон и т.д.
Я пользуюсь ей только на Linux. Утилита качается и устанавливается легко из стандартного репозитория операционной системы.
Но также читал, что и на Windows есть подобное решение.
7. Транспортные протоколы TCP и UDP
Все передачи запросов и прием ответов между устройствами в сети осуществляются с помощью транспортных протоколов TCP и UDP.
TCP протокол гарантированно осуществляет доставку запроса и целостность его передачи. Он заранее проверяет доступность узла перед отправкой пакета. А если по пути целостность пакета будет нарушена, то TCP дополнит недостающие составляющие.
В общем, это протокол, который сделает все, чтобы ваш запрос корректно дошел до адресата.
Поэтому TCP самый распространенный транспортный протокол. Он используется когда пользователь серфит интернет, лазает по сайтам, сервисам, соц. сетям и т.д.
UDP протокол не имеет такой гарантированной передачи данных, как TCP. Он не проверяет доступность конечного узла перед отправкой и не восполняет пакет в случае его деградации. Если какой-то пакет или несколько пакетов по пути утеряны, то сообщение дойдет до адресата в таком неполном виде.
Зачем тогда нужен UDP?
Дело в том, что данный транспортный протокол имеет огромное преимущество перед TCP в скорости передачи данных. Поэтому UDP широко используется для пересылки голосовых и видео пакетов в реальном времени. А именно, в ip-телефонии и видео звонках.
К примеру, любой звонок через WhatsApp или Viber использует транспортный протокол UDP. Также и при видео звонках, например, через Skype или те же мессенджеры WhatsApp и Viber.
Именно потому что UDP не гарантирует абсолютную передачу данных и целостность передаваемого пакета, зачастую возникают проблемы при звонках через интернет.
Это прерывание голоса, запаздывание, эхо или робоголос.
Данная проблема возникает из-за нагруженного интернет канала, двойного NATа или радиоканала.
Хорошо бы конечно в таких случаях использовать TCP, но увы, для передачи голоса необходима мгновенная передача целостных пакетов, а для этой задачи идеально подходит UDP.
Чтобы не возникало проблем с использованием UDP протокола, нужно просто организовать качественный интернет канал. А также настроить на роутере выделенную полосу для UDP, чтобы нагрузка с других устройств, которые используют TCP не мешала работе транспортного протокола UDP.
На этом всё.
Я не стал нагромождать статью и копипастить сюда научные определения всех используемых терминов, кому это необходимо, просто загуглите.
Я постарался собрать воедино 7 самых важных, на мой взгляд, моментов, знание которых, помогут юному “айтишнику” пройти первые этапы собеседования на “айтишные” должности или хотя бы просто дать понять работодателю, что вы явно знаете больше, чем рядовой юзер.
Изучайте, конспектируйте. Надеюсь, что статья многим принесет пользу.
Для связи локальной сети с интернетом необходимо такое устройство как
В современных сетях используются различные сетевые устройства. Каждое сетевое устройство выполняет специфические функции. Далее я рассматриваю основные виды устройств и их функции. В статье много иллюстраций (картинки кликабельны).
Сетевые устройства
Устройства, подключенные к какому-либо сегменту сети, называют сетевыми устройствами. Их принято подразделять на 2 группы:
Ниже более подробно описаны типы устройств и их функции.
Типы сетевых устройств
Сетевые карты
Устройства, которые связывают конечного пользователя с сетью, называются также оконечными узлами или станциями (host). Примером таких устройств является обычный персональный компьютер или рабочая станция (мощный компьютер, выполняющий определенные функции, требующие большой вычислительной мощности. Например, обработка видео, моделирование физических процессов и т.д.). Для работы в сети каждый хост оснащен платой сетевого интерфейса (Network Interface Card — NIC), также называемой сетевым адаптером. Как правило, такие устройства могут функционировать и без компьютерной сети.
Сетевой адаптер представляет собой печатную плату, которая вставляется в слот на материнской плате компьютера, или внешнее устройство. Каждый адаптер NIC имеет уникальный код, называемый MAC-адресом. Этот адрес используется для организации работы этих устройств в сети. Сетевые устройства обеспечивают транспортировку данных, которые необходимо передавать между устройствами конечного пользователя. Они удлиняют и объединяют кабельные соединения, преобразуют данные из одного формата в другой и управляют передачей данных. Примерами устройств, выполняющих перечисленные функции, являются повторители, концентраторы, мосты, коммутаторы и маршрутизаторы.
Сетевой адаптер (NIC)
Повторители
Повторители (repeater) представляют собой сетевые устройства, функционирующие на первом (физическом) уровне эталонной модели OSI. Для того чтобы понять работу повторителя, необходимо знать, что по мере того, как данные покидают устройство отправителя и выходят в сеть, они преобразуются в электрические или световые импульсы, которые после этого передаются по сетевой передающей среде. Такие импульсы называются сигналами (signals). Когда сигналы покидают передающую станцию, они являются четкими и легко распознаваемыми. Однако чем больше длина кабеля, тем более слабым и менее различимым становится сигнал по мере прохождения по сетевой передающей среде. Целью использования повторителя является регенерация и ресинхронизация сетевых сигналов на битовом уровне, что позволяет передавать их по среде на большее расстояние. Термин повторитель (repeater) первоначально означал отдельный порт ‘‘на входе’’ некоторого устройства и отдельный порт на его ‘‘выходе’’. В настоящее время используются также повторители с несколькими портами. В эталонной модели OSI повторители классифицируются как устройства первого уровня, поскольку они функционируют только на битовом уровне и не просматривают другую содержащуюся в пакете информацию.
Концентраторы
Концентратор — это один из видов сетевых устройств, которые можно устанавливать на уровне доступа сети Ethernet. На концентраторах есть несколько портов для подключения узлов к сети. Концентраторы — это простые устройства, не оборудованные необходимыми электронными компонентами для передачи сообщений между узлами в сети. Концентратор не в состоянии определить, какому узлу предназначено конкретное сообщение. Он просто принимает электронные сигналы одного порта и воспроизводит (или ретранслирует) то же сообщение для всех остальных портов.
Для отправки и получения сообщений все порты концентратора Ethernet подключаются к одному и тому же каналу. Концентратор называется устройством с общей полосой пропускания, поскольку все узлы в нем работают на одной полосе одного канала.
Концентраторы и повторители имеют похожие характеристики, поэтому концентраторы часто называют многопортовыми повторителями (multiport repeater). Разница между повторителем и концентратором состоит лишь в количестве кабелей, подсоединенных к устройству. В то время как повторитель имеет только два порта, концентратор обычно имеет от 4 до 20 и более портов.
Концентратор Cisco Fasthub 108T
Свойства концентраторов
Ниже приведены наиболее важные свойства устройств данного типа:
Функции концентраторов
Концентраторы считаются устройствами первого уровня, поскольку они всего лишь регенерируют сигнал и повторяют его на всех своих портах (на выходных сетевых соединениях). Сетевой адаптер узла принимает только сообщения, адресованные на правильный MAC-адрес. Узлы игнорируют сообщения, которые адресованы не им. Только узел, которому адресовано данное сообщение, обрабатывает его и отвечает отправителю.
Для отправки и получения сообщений все порты концентратора Ethernet подключаются к одному и тому же каналу. Концентратор называется устройством с общей полосой пропускания, поскольку все узлы в нем работают на одной полосе одного канала.
Через концентратор Ethernet можно одновременно отправлять только одно сообщение. Возможно, два или более узла, подключенные к одному концентратору, попытаются одновременно отправить сообщение. При этом происходит столкновение электронных сигналов, из которых состоит сообщение.
Столкнувшиеся сообщения искажаются. Узлы не смогут их прочесть. Поскольку концентратор не декодирует сообщение, он не обнаруживает, что оно искажено, и повторяет его всем портам. Область сети, в которой узел может получить искаженное при столкновении сообщение, называется доменом коллизий.
Внутри этого домена узел, получивший искаженное сообщение, обнаруживает, что произошла коллизия. Каждый отправляющий узел какое-то время ждет и затем пытается снова отправить или переправить сообщение. По мере того, как количество подключенных к концентратору узлов растет, растет и вероятность столкновения. Чем больше столкновений, тем больше будет повторов. При этом сеть перегружается, и скорость передачи сетевого трафика падает. Поэтому размер домена коллизий необходимо ограничить.
Мосты
Мост (bridge) представляет собой устройство второго уровня, предназначенное для создания двух или более сегментов локальной сети LAN, каждый из которых является отдельным коллизионным доменом. Иными словами, мосты предназначены для более рационального использования полосы пропускания. Целью моста является фильтрация потоков данных в LAN-сети с тем, чтобы локализовать внутрисегментную передачу данных и вместе с тем сохранить возможность связи с другими
частями (сегментами) LAN-сети для перенаправления туда потоков данных. Каждое сетевое устройство имеет связанный с NIC-картой уникальный MAC-адрес. Мост
собирает информацию о том, на какой его стороне (порте) находится конкретный MAC-адрес, и принимает решение о пересылке данных на основании соответствующего списка MAC-адресов. Мосты осуществляют фильтрацию потоков данных на основе только MAC-адресов узлов. По этой причине они могут быстро пересылать данные любых протоколов сетевого уровня. На решение о пересылке не влияет тип используемого протокола сетевого уровня, вследствие этого мосты принимают решение только о том, пересылать или не пересылать фрейм, и это решение основывается лишь на MAC-адресе получателя. Ниже приведены наиболее важные свойства мостов.
Свойства мостов
Функции мостов
Отличительными функциями моста являются фильтрация фреймов на втором уровне и используемый при этом способ обработки трафика. Для фильтрации или выборочной доставки данных мост создает таблицу всех MAC-адресов, расположенных в данном сетевом сегменте и в других известных ему сетях, и преобразует их в соответствующие номера портов. Этот процесс подробно описан ниже.
Этап 1. | Если устройство пересылает фрейм данных впервые, мост ищет в нем MAC-адрес устройства отправителя и записывает его в свою таблицу адресов. |
Этап 2. | Когда данные проходят по сетевой среде и поступают на порт моста, он сравнивает содержащийся в них MAC-адрес пункта назначения с MAC-адресами, находящимися в его адресных таблицах. |
Этап 3. | Если мост обнаруживает, что MAC-адрес получателя принадлежит тому же сетевому сегменту, в котором находится отправитель, то он не пересылает эти данные в другие сегменты сети. Этот процесс называется фильтрацией (filtering). За счет такой фильтрации мосты могут значительно уменьшить объем передаваемых между сегментами данных, поскольку при этом исключается ненужная пересылка трафика. |
Этап 4. | Если мост определяет, что MAC-адрес получателя находится в сегменте, отличном от сегмента отправителя, он направляет данные только в соответствующий сегмент. |
Этап 5. | Если MAC-адрес получателя мосту неизвестен, он рассылает данные во все порты, за исключением того, из которого эти данные были получены. Такой процесс называется лавинной рассылкой (flooding). Лавинная рассылка фреймов также используется в коммутаторах. |
Этап 6. | Мост строит свою таблицу адресов (зачастую ее называют мостовой таблицей или таблицей коммутации), изучая MAC-адреса отправителей во фреймах. Если MAC-адрес отправителя блока данных, фрейма, отсутствует в таблице моста, то он вместе с номером интерфейса заносится в адресную таблицу. В коммутаторах, если рассматривать (в самом простейшем приближении) коммутатор как многопортовый мост, когда устройство обнаруживает, что MAC-адрес отправителя, который ему известен и вместе с номером порта занесен в адресную таблицу устройства, появляется на другом порту коммутатора, то он обновляет свою таблицу коммутации. Коммутатор предполагает, что сетевое устройство было физически перемещено из одного сегмента сети в другой. |
Коммутаторы
Коммутаторы используют те же концепции и этапы работы, которые характерны для мостов. В самом простом случае коммутатор можно назвать многопортовым мостом, но в некоторых случаях такое упрощение неправомерно.
Коммутатор Ethernet используется на уровне доступа. Как и концентратор, коммутатор соединяет несколько узлов с сетью. В отличие от концентратора, коммутатор в состоянии передать сообщение конкретному узлу. Когда узел отправляет сообщение другому узлу через коммутатор, тот принимает и декодирует кадры и считывает физический (MAC) адрес сообщения.
В таблице коммутатора, которая называется таблицей MAC-адресов, находится список активных портов и MAC-адресов подключенных к ним узлов. Когда узлы обмениваются сообщениями, коммутатор проверяет, есть ли в таблице MAC-адрес. Если да, коммутатор устанавливает между портом источника и назначения временное соединение, которое называется канал. Этот новый канал представляет собой назначенный канал, по которому два узла обмениваются данными. Другие узлы, подключенные к коммутатору, работают на разных полосах пропускания канала и не принимают сообщения, адресованные не им. Для каждого нового соединения между узлами создается новый канал. Такие отдельные каналы позволяют устанавливать несколько соединений одновременно без возникновения коллизий.
Микросегментация (microsegmentation) позволяет создавать частные, или выделенные сегменты, в которых имеется только одна рабочая станция. Каждая такая станция получает мгновенный доступ ко всей полосе пропускания, и ей не приходится конкурировать с другими станциями за право доступа к передающей среде. В дуплексных коммутаторах не происходит коллизий, поскольку к каждому порту коммутатора подсоединено только одно устройство.
Однако, как и мост, коммутатор пересылает широковещательные пакеты всем сегментам сети. Поэтому в сети, использующей коммутаторы, все сегменты должны рассматриваться как один широковещательный домен.
Некоторые коммутаторы, главным образом самые современные устройства и коммутаторы уровня предприятия, способны выполнять операции на нескольких уровнях. Например, устройства серий Cisco 6500 и 8500 выполняют некоторые функции третьего уровня.
Коммутаторы Cisco серии Catalyst 6500
Иногда к порту коммутатора подключают другое сетевое устройство, например, концентратор. Это увеличивает количество узлов, которые можно подключить к сети. Если к порту коммутатора подключен концентратор, MAC-адреса всех узлов, подключенных к концентратору, связываются с одним портом. Бывает, что один узел подключенного концентратора отправляет сообщения другому узлу того же устройства. В этом случае коммутатор принимает кадр и проверяет местонахождение узла назначения по таблице. Если узлы источника и назначения подключены к одному порту, коммутатор отклоняет сообщение.
Если концентратор подключен к порту коммутатора, возможны коллизии. Концентратор передает поврежденные при столкновении сообщения всем портам. Коммутатор принимает поврежденное сообщение, но, в отличие от концентратора, не переправляет его. В итоге у каждого порта коммутатора создается отдельный домен коллизий. Это хорошо. Чем меньше узлов в домене коллизий, тем менее вероятно возникновение коллизии.
Маршрутизаторы
Маршрутизаторы (router) представляют собой устройства объединенных сетей, которые пересылают пакеты между сетями на основе адресов третьего уровня. Маршрутизаторы способны выбирать наилучший путь в сети для передаваемых данных. Функционируя на третьем уровне, маршрутизатор может принимать решения на основе сетевых адресов вместо использования индивидуальных MAC-адресов второго уровня. Маршрутизаторы также способны соединять между собой сети с различными технологиями второго уровня, такими, как Ethernet, Token Ring и Fiber Distributed Data Interface (FDDI — распределенный интерфейс передачи данных по волоконно»оптическим каналам). Обычно маршрутизаторы также соединяют между собой сети, использующие технологию асинхронной передачи данных ATM (Asynchronous Transfer Mode — ATM) и последовательные соединения. Вследствие своей способности пересылать пакеты на основе информации третьего уровня, маршрутизаторы стали основной магистралью глобальной сети Internet и используют протокол IP.
Маршрутизатор Cisco 1841
Функции маршрутизаторов
Задачей маршрутизатора является инспектирование входящих пакетов (а именно, данных третьего уровня), выбор для них наилучшего пути по сети и их коммутация на соответствующий выходной порт. В крупных сетях маршрутизаторы являются главными устройствами, регулирующими перемещение по сети потоков данных. В принципе маршрутизаторы позволяют обмениваться информацией любым типам компьютеров.
Как маршрутизатор определяет нужно ли пересылать данные в другую сеть? В пакете содержатся IP-адреса источника и назначения и данные пересылаемого сообщения. Маршрутизатор считывает сетевую часть IP-адреса назначения и с ее помощью определяет, по какой из подключенных сетей лучше всего переслать сообщение адресату.
Если сетевая часть IP-адресов источника и назначения не совпадает, для пересылки сообщения необходимо использовать маршрутизатор. Если узел, находящийся в сети 1.1.1.0, должен отправить сообщение узлу в сети 5.5.5.0, оно переправляется маршрутизатору. Он получает сообщение, распаковывает и считывает IP-адрес назначения. Затем он определяет, куда переправить сообщение. Затем маршрутизатор снова инкапсулирует пакет в кадр и переправляет его по назначению.
Брандмауэры
Термин брандмауэр (firewall) используется либо по отношению к программному обеспечению, работающему на маршрутизаторе или сервере, либо к отдельному аппаратному компоненту сети.
Брандмауэр защищает ресурсы частной сети от несанкционированного доступа пользователей из других сетей. Работая в тесной связи с программным обеспечением маршрутизатора, брандмауэр исследует каждый сетевой пакет, чтобы определить, следует ли направлять его получателю. Использование брандмауэра можно сравнить с работой сотрудника, который
отвечает за то, чтобы только разрешенные данные поступали в сеть и выходили из нее.
Аппаратный брандмауэр Cisco PIX серии 535
Голосовые устройства, DSL-устройства, кабельные модемы и оптические устройства
Возникший в последнее время спрос на интеграцию голосовых и обычных данных и быструю передачу данных от конечных пользователей в сетевую магистраль привел к появлению следующих новых сетевых устройств:
Беспроводные сетевые адаптеры
Каждому пользователю беспроводной сети требуется беспроводной сетевой адаптер NIC, называемый также адаптером клиента. Эти адаптеры доступны в виде плат PCMCIA или карт
стандарта шины PCI и обеспечивают беспроводные соединения как для компактных переносных компьютеров, так и для настольных рабочих станций. Переносные или компактные компьютеры PC с беспроводными адаптерами NIC могут свободно перемещаться в территориальной сети, поддерживая при этом непрерывную связь с сетью. Беспроводные адаптеры
для шин PCI (Peripheral Component Interconnect — 32-разрядная системная шина для подключения периферийных устройств) и ISA (Industry-Standard Architecture — структура, соответствующая промышленному стандарту) для настольных рабочих станций позволяют добавлять к локальной сети LAN конечные станции легко, быстро и без особых материальных
затрат. При этом не требуется прокладки дополнительных кабелей. Все адаптеры имеют антенну: карты PCMCIA обычно выпускаются со встроенной антенной, а PCI-карты комплектуются внешней антенной. Эти антенны обеспечивают зону приема, необходимую для передачи и приема данных.
Беспроводной сетевой адаптер
Точки беспроводного доступа
Точка доступа (Access Point — AP), называемая также базовой станцией, представляет собой беспроводной приемопередатчик локальной сети LAN, который выполняет функции концентратора, т.е. центральной точки отдельной беспроводной сети, или функции моста — точки соединения проводной и беспроводной сетей. Использование нескольких точек AP позволяет обеспечить выполнение функций роуминга (roaming), что предоставляет пользователям беспроводного доступа свободный доступ в пределах некоторой области, поддерживая при этом непрерывную связь с сетью.
Точка беспроводного доступа Cisco AP 541N
Беспроводные мосты
Беспроводной мост обеспечивает высокоскоростные беспроводные соединения большой дальности в пределах видимости5 (до 25 миль) между сетями Ethernet.
В беспроводных сетях Cisco любая точка доступа может быть использована в качестве повторителя (точки расширения).
Беспроводной мост Cisco WET200-G5 с интегрированным 5-ти портовым коммутатором
Выводы
Сегодня сложно найти устройства выполняющие только одну функцию. Все чаще производители интегрируют в одно устройство несколько функций, которые раньше выполнялись отдельными устройствами в сети. Поэтому деление на типы устройств становится условным. Нужно только ясно отличать функции этих составных устройств и область их применения. Ярким примером такой интеграции, являются маршрутизаторы со встроенными DCHP-серверами и т.д.