достройте четырехугольник abcd так чтобы он был описан около данной окружности
Достройте четырехугольник abcd так чтобы он был описан около данной окружности
Четырехугольник ABCD описан около окружности и вписан в окружность. Прямые AB и DC пересекаются в точке M. Найдите площадь четырехугольника, если известно, что ∠AMD = α и радиусы окружностей, вписанных в треугольники BCM и AMD равны соответственно r и R.
Центры O1 и O окружностей, вписанных в треугольники BMC и AMD соответственно, лежат на биссектрисе MO угла AMD. Окружность, вписанная в четырехугольник ABCD, является также окружностью, вписанной в треугольник AMD и вневписанной окружностью треугольника BMC. Будем искать площадь четырехугольника ABCD, как разность площадей треугольников AMD и BMC.
Четырехугольник ABCD вписан в окружность, следовательно, ∠BAD + ∠BCD = 180°, но ∠BCM + ∠BCD = 180°, откуда ∠BCM = ∠BAD. Так как треугольники BCM и AMD имеют еще общий угол AMD, они подобны, причем коэффициент подобия равен отношению радиусов окружностей, вписанных в эти треугольники.
1)
2) где p — полупериметр треугольника BCM, равный по свойству вневписанной окружности длине отрезка KM.
3) Из прямоугольного треугольника OKM, находим откуда
Подставляя найденное значение SΔBCM в формулу SABCD, окончательно получаем
Отличается от первого положением точки M левее точек D и A. В этом случае R
Ответ: или
Достройте четырехугольник abcd так чтобы он был описан около данной окружности
Четырёхугольник ABCD вписан в окружность, причём диаметром окружности является его диагональ AC. Также известно, что в ABCD можно вписать окружность.
а) Докажите, что отрезки AC и BD перпендикулярны.
б) Найдите радиус вписанной окружности четырёхугольника ABCD, если AC = 26 и BD = 24.
а) Пусть BD и AC пересекаются в точке M. Так как ABCD — описанный четырёхугольник, Будем считать, что
и
Углы ABC и ADC прямые, так как AC — диаметр. По теореме Пифагора получаем
и
Отсюда следует, что
то есть
и
Это значит, что треугольники ABC и ADC равны по третьему признаку равенства треугольников, поэтому
Следовательно, CM — биссектриса треугольника DBC, а также его высота и медиана.
б) Пусть O — центр окружности, описанной около четырёхугольника ABCD. Тогда её радиус поэтому
Допустим, что
тогда
и
Рассматривая прямоугольные треугольники AMB и ABC, можем записать
следовательно,
Аналогично
поэтому полупериметр четырёхугольника ABCD равен
Площадь же четырёхугольника ABCD равна
Искомый радиус вписанной окружности равен
Ответ: б)
Критерии оценивания выполнения задания | Баллы | ||||||
---|---|---|---|---|---|---|---|
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б) | 3 | ||||||
Получен обоснованный ответ в пункте б) имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки | 2 | ||||||
Имеется верное доказательство утверждения пункта а) при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки, Достройте четырехугольник abcd так чтобы он был описан около данной окружностиЧетырёхугольник ABCD вписан в окружность, причём диаметром окружности является его диагональ AC. Также известно, что в ABCD можно вписать окружность. а) Докажите, что отрезки AC и BD перпендикулярны. б) Найдите радиус вписанной окружности четырёхугольника ABCD, если AC = 26 и BD = 10. а) Пусть BD и AC пересекаются в точке M. Так как ABCD — описанный четырёхугольник, б) Пусть O — центр окружности, описанной около четырёхугольника ABCD. Тогда её радиус Ответ: б)
|