Как сделать ракету на сахаре
Ракета от Амперки, часть 1: Теория ракетных двигателей. Карамельное топливо
Вступление
Всем привет! Мы — команда ютуб-канала Амперки, в студии и пилим видео по проектам и железкам. Однако, в какой-то момент все изменилось.
Под катом — история постройки нашей ракеты.
Шла весна 2020 года и карантин самоизоляция не щадила никого. В том числе и нас, отлученных от студии, дабы не подвергались опасности заражения заморской бациллой. Вот в этот-то период и начали активизироваться в голове старые идеи сделать то, что давно хотелось, но что было отложено в долгий ящик “когда время будет”. Наконец, то_самое_время пришло, и из того самого ящика была извлечена мысль о постройке собственной ракеты, еще и подстёгнутая недавним успешным пуском в эксплуатацию “батута” от SpaceX.
Так как сделать такой серьезный проект за один заход не получится, разделим его для удобства на составные части (список будет пополняться по мере работы):
Также просим учесть, что статьи, как и серии выпускаются не по выполненным этапам, а по привязке ко времени, то есть, что сделали за неделю, то и пишем/показываем.
Ракетостроение, в целом, наука комплексная, сложная и многогранная. Релевантного опыта у нас не было, не кончали мы институтов по этому направлению, но есть руки, голова, желание — а это уже многое, так что, как говаривал Юрий Алексеевич, поехали.
Теория ТТРД
Что такое реактивное движение, (для тех, кто, вдруг, не в курсе) много говорить не будем: если в двух словах, то это движение за счет отброса массы в противоположную сторону от направления движения. Про всякие экзотические конструкции двигателей типа ядерных, ионных и иже с ними говорить не будем — одна не предназначены для работы в атмосфере, другие слишком сложны и не воспроизводимы в любительских условиях и т.д., поэтому остановимся на простых, но доступных простому обывателю конструкциях, которые при желании можно повторить практически в домашних условиях, а именно — химических. В таких двигателях реактивная струя получается за счет химической реакции топлива и окислителя (в некоторых случаях роль окислителя может играть атмосферный кислород).
Итак, химические двигатели (ХРД), по агрегатному состоянию топлива классифицируются на жидкостные (ЖРД) и твердотопливные (ТТРД), так что выбирать будем из них. ЖРД весьма удобны, так как позволяют управлять тягой, однако требуют применения в своей конструкции сложных систем форсунок в камере сгорания и не менее сложных систем подачи топлива. Одно только проектирование ЖРД, даже самого примитивного, займет у нас месяцы, а, следовательно, это не наш вариант. Альтернативой могут стать ТТРД за счет простоты своей конструкции и значительно меньшими требованиями к топливу. Да, у нас не выйдет точно дозировать тягу. Точнее, мы ее совсем не сможем дозировать. Однако, есть некоторые аспекты, на которых мы можем сыграть, об этом и пойдет речь дальше.
Виды смесевого топлива
Намного лучший результат показывают смесевые составы из горючего и окислителя. Чаще всего в качестве такой пары применяют окислители из перхлоратов с горючим из порошка металлов и полимеров или широко известное в кругах моделистов-любителей “карамельное топливо”, где в качестве окислителя используются нитраты (селитры) и сложные углеводы (сахар, сорбит) в роли горючего. Вот как раз последние два варианта (перхлоратное и карамельное) топливо мы и выбрали в качестве подопытных для нашей ракеты.
Расчет двигателя
Важнейшая характеристика твердого топлива — это скорость его горения, зачастую это значение — константа для определенного состава топлива. Горение распространяется по поверхности. Если просто поджечь конец цилиндрической топливной шашки, то мы получим торцевое горение, которое даст длительное равномерное прогорание, однако, получить при этом достаточную тягу для подъема ракеты в воздух не выйдет. Для повышения эффективности нужно сделать в топливе канал, по которому будет распространяться горение, повысив тем самым его площадь. Также нужно учитывать, что по мере выгорания профиль канала будет меняться, следовательно, будет меняться эффективная площадь. Можно, конечно, долго экспериментировать с различными профилями, однако, это все уже сделано до нас и упаковано в удобный программный инструментарий.
В программу можно внести все необходимые параметры и получить графики тяги, которую будет развивать ракета. В графе Grain configuration под знаком вопроса есть описательный мануал по различным профилям канала.
Опытным путем, применяя различные конфигурации канала мы нашли оптимальные параметры для нашей ракеты. Для получения таких же показателей нужно ввести такие значения:
Форму канала мы выбрали Moon burner. Умный Meteor c учетом введенных данных построил нам вот такой график:
Из этой диаграммы понимаем, что двигатель со старта получит хороший пинок и будет развивать весьма неплохую тягу на протяжении всего времени работы. По расчетам программы пиковое значение тяги получилось без малого 312 Н при пиковом давлении в 24.5 бар. Средние значения оказались около 265 Н и 19.5 бар соответственно.
Еще одним неоспоримым плюсом программы является возможность прямого экспорта рассчитанных значений в другую не менее полезную для нас программу — OpenRocket, при помощи которой мы будем рассчитывать стабильность ракеты, оперение, балансировку и другие важные показатели, но это будет уже в следующей серии.
Однако, не топливом единым жив начинающий ракетостроитель. Не менее важное значение имеет сопло. По этому принципу РД делятся на сопловые и бессопловые. Последние, технически, имеют дозвуковое сопло, являющееся, по сути, просто отверстием или конусом в нижней части двигателя. Дозвуковым оно называется по той причине, что истекающие через него газы не могут достигать, а уж тем более, превосходить скорость звука, сколько бы не наращивалось давление в камере сгорания, об этом нам говорит гидродинамика. А против физики, как известно, не попрёшь. Тем не менее, такие сопла за счет своей простоты применяются в малых любительских ракетах, а также в фейерверках. Но мы же делаем ракету, значит, дозвуковые сопла — не наш путь.
Альтернативным решением является сверхзвуковое сопло или, как его еще называют по имени изобретателя, — сопло Лаваля. В упрощенном варианте представляет собой два усеченных конуса, сопряженных узкими концами. Место сопряжения называется критической точкой.
Принцип его действия напоминает принцип, на котором работает холодильник: газы, проходя “узкое горлышко” и попадая в бОльший объем резко охлаждаются, за счет чего уменьшается их объем, что приводит увеличению скорости их истечения. В результате, за счет перепада диаметра выпускного отверстия мы получаем на выходе струю газа, движущегося со сверхзвуковой скоростью. Таким образом, применив сопло Лаваля мы значительно повышаем КПД ракеты.
К слову, Meteor проводит расчеты, подразумевая, что на двигателе установлено как раз сверхзвуковое сопло, расчет и изготовление которого также оставим на следующий выпуск.
Итак, характеристики, параметры и габариты двигателя у нас есть, можно приступать к варке топлива.
Изготовление топливных шашек
Первым топливом у нас будет карамельное, готовить будем из сорбита и калиевой селитры. Сорбит можно купить в аптеке, он используется как сахарозаменитель. Калиевую селитру можно найти в садово-огородном отделе, но там она довольно грязная, поэтому купили ч/чда в Русхиме.
Простейший способ — измельчить компоненты до состояния мелкодисперсного порошка и смешать, но тогда топливо остается сыпучим и не будет держать форму. Решено сплавить компоненты вместе. Некоторые бесстрашные любители делают это в сковородках, на открытом огне, даже, бывает на костре, но нам дороги наши пальцы и глаза. Придется делать нагреватель с контролем температуры и песчаная баня, для которого нам понадобятся:
Meteor заботливо подсчитал массу топлива, которая составила 838г, возьмем с запасом, еще пригодится. Решено было сделать топливный заряд из нескольких шашек для простоты их изготовления. Потом можно будет их просто склеить между собой и вставить в корпус двигателя.
Не забываем про технику безопасности: вблизи топлива не должно быть никаких источников открытого огня, раскаленных предметов и чего-либо, что может вызвать возгорание.
Возьмем по массе 65% калиевой селитры и 35% сорбита, аккуратно засыпаем в чашу и добавляем немного воды. Это и нервы успокоит, и избавит от необходимости измельчать компоненты в пыль, так как в воде они и без того хорошо растворятся и смешаются. Ставим на огонь, выставляем температуру и ждем, постоянно помешивая. Постепенно полученная каша расплавится и станет похожа на овсянку. Надо дождаться выпаривания всей лишней воды (это можно будет понять по прекратившемуся выходу кипящих пузырьков).
Дальше надо действовать решительно: в заранее подготовленную водопроводную ПВХ-трубу, зафиксированную в держателе с внутренним креплением под круглую ось будем запрессовывать топливо.
После извлечения оси у нас как раз останется канал запала по всей длине шашки. Запрессовывать удобно при помощи держателя для дрели, такой очень удачно нашелся в студии. Важно запрессовать топливо таким образом, чтобы внутри шашки не оказалось пузырей и полостей, иначе это потом негативно скажется на горении.
Трубу с топливом откладываем и оставляем до остывания. Затем ее можно будет распилить и достать шашку. Мы сделали несколько штук, одну из них сожжем в целях эксперимента.
В следующем выпуске займемся корпусом двигателя, соплом и испытательным стендом.
А пока мы его готовим, рекомендую почитать следующую книжку про проектирование ЗУРов. Из нее была почерпнута бОльшая часть информации.
Большая Карамельная Ракета
Ракетостроение, даже не ракетомоделизм из кружков (Model Rocketry или High Power Rocketry), пожалуй отличное хобби для технаря, и, конечно айтишника. Даже сам Джон Кармак (один из создателей Doom, кто не знает) в детстве занимался ракетостроением, что уже после id Software переросло в свою ракетную компанию Armadillo Aerospace.
Конструкция ракеты
Конструкции большинства ракет в основном схожи между собой. Они удовлетворяют в большинстве случаев, так скажем, идеальной «эмпирической ракете»:
длина ракеты полная: L= 15
длина головного обтекателя: Ln = 2.5
размах стабилизатора: S = 1
общая площадь стабилизаторов: F= 0,7
запас устойчивости: k = 1,5
«Эмпирическая ракета» Rocki
В зависимости от поставленных целей и используемых компонентов параметры ракеты могут варьироваться, конечно же, но почти всегда укладываются в вышеобозначенные границы.
Стабилизаторы стоит изготавливать из достаточно лёгкого, но прочного материала. Например пластика, фанеры или бальзы. Форма и размер стабилизаторов зависят от размеров ракеты, а если быть точным, то от расположения центра тяжести ракеты и центра давления.
Модель устойчивости ракеты Rocki об устойчивости ракеты
Ракета никогда не летит прямо, а все время поворачивается от направления полета то в одну, то в другую сторону, т.е. рыскает. На ракету набегает встречный поток воздуха, направление которого строго противоположно направлению полета. Получается, что ракета все время поворачивается боком к набегающему потоку на некоторый угол. В аэродинамике такой угол называется углом атаки. Мы уже установили, что ракета, как любое твердое тело, поворачивается относительно ЦТ, но результирующая сила давления воздуха приложена совсем к другой точке, т.е. к ЦД. Если ракета имеет симметричную форму относительно оси, то ЦД потока воздуха расположен на оси ракеты. Если ЦД расположен ближе к хвосту ракеты, то давление воздуха стремится вернуть ракету навстречу набегающему потоку, т.е. на траекторию. Ракета будет устойчива. Тут вполне допустима аналогия с флюгером. Если ракету насадить на стержень, проходящий поперек оси ракеты через ЦТ и вынести её на улицу, где сильный ветер, то устойчивая ракета повернется навстречу ветру. Из этих же соображений делается простейшая проверка ракеты на устойчивость с помощью веревки: привязываем веревку к ракете в месте расположения центра тяжести и начинаем вращать ракету вокруг себя. Если ракета при вращении ориентируется строго по направлению движения, то она аэродинамически устойчива, если ракету крутит в разные стороны или она летит хвостом вперед, то ракета неустойчива.
Центр тяжести ракеты определяется простым методом «взвешивания». Положив ракету на руку, нужно найти точку, в которой достигается равновесие.
Интерфейс Rocki-design и модель будущей ракеты
Есть готовые программные решения для расчёта параметров ракеты. Я использую Rocki-design, но чаще, тем более в англоязычном мире используют OpenRocket. Подобрав нужный размер стабилизаторов, вырезаем их из заготовки и прикручиваем винтами к корпусу, используя металлические уголки. Крепление должно быть жёстким. Для лёгких ракет сгодится и просто приклеивание, но для тяжелой ракеты лучше перестраховаться.
Система спасения
Заготовка для мортирки
Вырезаем парашют
Конструкция крепления системы спасения
Головной обтекатель также подвязывается к фалу.
В сборе внутренние компоненты ракеты ракеты занимают весь внутренний объем.
Модель ракеты со всеми компонентами
Двигатель
Топливные шашки
Из шашек формируется сборка двигателя с единым топливным каналом. При этом шашки укладываются в теплоизоляционную (негорючую) трубку из тефлона\бумаги, пропитанной силикатным клеем. Теплоизоляция нужна для того, чтобы не допустить разрушения двигателя из-за температуры (фронта горения и горячих газов) при горении топлива.
Схема двигателя
График тяги
График давления
Для расчёта двигателя используются расчёты на основе закона горения. Безусловно, есть готовые решения для расчёта параметров двигателя.
Кроме того, обязательно проводятся стендовые испытания движков. Это позволяет отработать надёжность двигателя на земле, а также снять реальные показания тяги двигателя (которые могут отличаться от расчётных).
Кластерный двигатель на тяго-измерительном стенде
Электроника
В качестве бортового компьютера я использую собственную схему, в основе которой находится Arduino Nano.
Схема полётного компьютера
Как сделать ракету на сахаре
Другие страницы сайта:
Ракеты на топливе из карамельной бумаги.
Можно использовать любую селитру:
Для аммиачной селитры с преобразованием в натриевую:
Чтобы не портить воздух в комнате аммиаком выделяющемся в результате реакции с содой, готовить под вытяжкой или на открытом воздухе! Если такой возможности нет, банку с раствором можно выставить за окно на подоконник. Для подогрева можно использовать маленький кипятильник.
Для аммиачной селитры с преобразованием в калийную:
Для кальциевой селитры с преобразованием в натриевую или калийную:
Изготовление корпуса и сопла.
Потребуются: бумага, болванка круглого сечения, гвоздь или сверло, нитки.
Для таких двигателей (торцевого горения), чтобы увеличить тягу нужно уменьшать диаметр сопла или увеличивать диаметр двигателя. Если сразу после старта ракета взрывается, нужно увеличить толщину корпуса или диаметр сопла, делать бронировку рулона.
Приступайте к сборке только после того как всё полностью высохнет!
В двигатель карамельная бумага вкладывается в виде плотного рулона. Возьмите первый лист. Сразу начать скатывать его в рулон трудно, по этому мы начинаем с перегибов. Загибаем пару сантиметров, потом эту пару сантиметров складываем пополам. Ещё и ещё. Дальше уже можно начать скатывать. На первых сгибах бумага может ломаться, но это не страшно, продолжайте загибать её пока не станет возможно начать скатывать. Когда лист закончится берите следующий и продолжайте скатывать в рулон в ту же сторону. И так скатываем рулон пока его диаметр не станет чуть меньше внутреннего диаметра двигателя для которого он предназначен. Но не переусердствуйте, пусть лучше он будет свободно входить и выниматься, чем заклинится посередине! Закрепляем рулон ниткой или скотчем. Торцы готового рулона ровно срезаем ножом как сигару. У нас получился топливный рулон. Такими рулонами мы и заполним двигатель почти на всю длину.
Начиная делать пиротехнику вы должны понимать что берёте на себя ответственность за безопасность себя и окружающих.
Не испытывайте даже запала при открытых ёмкостях с смесью или неубранным топливом. Искра может отскочить именно туда!
Подходите к незагоревшейся ракете не ранее чем через 5 минут. Затем постучите по ней, если увидите отлетающие искорки не берите! Если ничего нет, смочите палец слюной и коснитесь сопла. Не дуйте в сопло и вообще старайтесь не направлять ракету соплом себе в лицо.
Должен предупредить об одной особенности этого топлива. Не делайте никакого пиротехнического заряда сразу за топливным рулоном из КБ. Он срабатывает тут же после старта и ракета взрывается. Для пиротехники или модельных двигателей используйте топлива описанные на следующей странице: >>> Кладовка.
Как определить высоту полёта ракеты?
Можно сравнивать с высотой домов:
∴ 5-ти этажка
50 м.
∴ Две 14-ти этажки поставленные одна на другую
Берём кусок проволоки без пластиковой изоляции. Скручиваем посередине кольцо, например с помощью ручки так, чтобы оно получилось больше диаметра штыря и могло свободно по нему двигаться. Оставшимися концами обнимаем корпус ракеты и скручиваем концы проволоки с противоположной стороны, как бы в противовес кольцу.
Спрашивать в магазинах для садоводов, огородников, цветочных как удобрение.
Сера продаётся в зоомагазинах как прикормка для животных.
Канал делается в самой пиротехнической смеси, обычно сверлением (со стороны сопла). Это делается для того, чтобы увеличить площадь горения и соответственно объём газов в случае, когда скорость горения смеси недостаточна для получения нужного объёма газов в единицу времени. Чем длинней канал, тем выше давление. Зажигание инициируется в самой глубине канала стопином в оболочке (квиком) или злектрозапалом.
Как сделать ракету на сахаре
Получение карамельного топлива методом выпаривания давно известно. Одной из самых удачных технологий выпаривания считается методика, придуманная американским ракетчиком Rcandy. В наших условиях точно повторить его метод затруднительно по разным причинам, на которых я останавливаться не буду. Просто предлагаю свою адаптацию, названную МИКС-1. Она проще и по компонентам и по технологии. Сравнений с оригиналом я, понятно, не делал, но успешное использование топлива в двигателе ТРДК-1 говорит о его пригодности.
Преимущество методики выпаривания очевидны.
Во-первых, компоненты не надо молоть, все равно они будут растворены в воде. Т.е. берем, к примеру, обычный сахарный песок или пудру, сорбит и селитру прямо из упаковки.
Во-вторых, не надо заранее перемешивать. Перемешивание делается уже в процессе растворения.
И, в-третьих, не нужен строгий контроль влажности исходных компонентов. Компоненты, конечно, надо брать достаточно сухие, чтобы влажность не влияла заметно на весовые пропорции компонентов. Обычно влажность составляющих в заводских упаковках вполне приемлема.
Компоненты топлива:
Горячей воды надо взять по весу селитры. Для получения быстрогорящего топлива можно добавить сверху 1-1,5% окиси железа Fe2O3. Добавлять окись можно сразу, со всеми компонентами, либо уже после готовности топлива, когда оно еще не загустело. Данный вариант назвал МИКС-1К.
Сахар покупаем в гастрономе, сорбит в аптеке, а селитру в садоводческом магазине или в специализированной фирме.
Компоненты отвешиваем в нужных пропорциях и ссыпаем в посудину, в которой будем готовить топливо. Хорошо подходит небольшая толстостенная алюминиевая сковорода. Для небольших количеств можно взять стальную жульенницу. Заливаем горячей водой и ставим на горячую плитку.
Обязательно контролируем температуру поверхности нагревателя
Как контролировать нагрев я писал в статье о сорбитовой карамели.
Сначала температура плитки может быть большой 200-250°C. Доводим нашу смесь до кипения и выпариваем, помешивая ложкой.
Процесс выпаривания требует постоянного контроля.
Когда смесь загустеет и начнет сильно пузыриться, уменьшаем температуру до 175°C, и продолжаем выпаривание с помешиванием.
После прекращения активного пузырения, можно продолжать процесс без помешивания.
В какой-то момент пузырение практически прекращается, только редкие одиночные пузырьки и легкое потрескивание говорит о том, что процесс продолжается. Тут лучше работать в тишине. Убираем температуру до 150°C и внимательно слушаем. Когда потрескивание прекратится, топливо готово.
Чтобы убедиться в этом окончательно, надо взять немного топлива, скатать маленькую колбаску, положить на металлическую поверхность и раздавить в лепешку. Если при сгибании лепешка «сломалась», значит точно, готово. Уменьшаем температуру до 100-120°C и начинаем укладку топлива в формы.
Топливо достаточно пластично, и укладка не представляет никакой сложности. Берется порция топлива, скатывается в плотный комок и кладется в форму. Затем торцом толстого металлического стержня комок вручную плотно утрамбовывается по форме. При необходимости берется следующий комок, укладывается сверху и опять трамбуется. При трамбовке карамель ведет себя, как пластилин, образуя плотную пластичную укладку, без пузырей воздуха, что очень важно.
Очень легко формировать в таком пластичном заряде разного рода каналы, продавливая состав подходящим стержнем. Заряд застывает довольно быстро, но времени для формирования каналов в шашке или скрепленном заряде вполне достаточно. В течение ближайшего получаса это делается без проблем.
Rcandy пишет, что можно топливо хранить в целлофановом пакете и, при необходимости, использовать, разогревая до 100-120°C. Я не проверял. Обычно делаю столько топлива, сколько надо для конкретной зарядки.
В процессе работы над торцевым мотором пришел к модернизации технологии изготовления топлива МИКС-1К.
1. Делаю предварительный помол окиси железа 20 сек в кофемолке.
2. Катализатор замешиваю заранее, до добавления воды.
3. После выпаривания не опускаю температуру ниже 180°C переводя топливо в фазу плавления.
Вариация получила название МИКС-1КП. Субъективно и объективно топливо получается немного более активным. Максимальная тяга торцевика ТРДК-1 на нем увеличилась на 17%. Скорость горения на воздухе 4,9-5,2 мм/с. Есть видео испытания образца.
Вместо заключения.
В результате разработки «быстрого» топлива получил несколько больше, чем планировал.
Во-первых, предложенный состав можно использовать, как в стандартном (МИКС-1), так и «ускоренном» (МИКС-1К) варианте.
Во-вторых, состав может приготовляться, как методом упаривания, так и методом плавления, что выгодно отличает его от состава на чистом сахаре. Присутствие сорбита не дает сахару разлагаться при плавлении топлива.
В-третьих, ненеароком выработалась новая технология приготовления топлива ВЫПАРИВАНИЕ-ПЛАВЛЕНИЕ. Она сочетает в себе все преимущества обеих технологий. Топливо МИКС-1КП, приготовленное по данной техноллогии по предварительным прикидкам активнее примерно на 10%.