Как сделать счетчик витков своими руками
Запоминающий реверсивный счётчик витков
Ознакомившись с рядом опубликованных в журнале конструкций счётчиков различного назначения (например, [1, 2]), я принял решение разработать свой вариант счётчика витков, в котором использована энергонезависимая память микроконтроллера. В результате удалось создать простой и удобный в работе счётчик витков для намоточного станка, не содержащий дефицитных деталей.
Он способен считать от 0 до 9999 оборотов вала, после чего показания индикатора обнуляются и счёт начинается заново. При вращении вала в обратную сторону индикатор уменьшает показания на единицу на каждый оборот.
Рис. 1
Счётчик состоит из нескольких узлов (рис. 1). Основой конструкции служит микроконтроллер DD1, к которому через токоограничительные резисторы R10—R16 подключён четырёхразрядный светодиодный индикатор HG1. Две оптопары — излучающий ИК диод— фототранзистор (VD2VT1, VD3VT2), — образующие датчик числа оборотов рабочего вала станка, формируют импульсы низкого уровня, по которым микроконтроллер определяет направление вращения и число оборотов вала. Предусмотрена кнопка SB1 для обнуления памяти, а также вспомогательные цепи: R2C2, работающая в составе встроенного тактирующего генератора микроконтроллера, VD1C1, сохраняющая напряжение питания, необходимое для перехода микроконтроллера в режим SLEEP, и R6R8, следящая за напряжением питания счётчика.
Известно, что микроконтроллеры семейства PIC довольно капризны при работе с EEPROM (особенно, когда запись в неё происходит автоматически). Уменьшение напряжения питания может исказить содержимое памяти При работе счётчика линия RB1 (вывод 7) микроконтроллера, к которой подключена цепь R6R8, опрашивается на наличие напряжения питания, и если оно пропадает, то благодаря цепи VD1C1 микроконтроллер успевает перейти в спящий режим, тем самым блокируя дальнейшее выполнение программы и защищая информацию в EEPROM. В процессе счёта микроконтроллер будет сохранять в памяти числа после каждого оборота рабочего вала станка. При каждом очередном включении питания индикатор HG1 отобразит то число, что было до отключения.
Датчик представляет собой небольшую печатную плату (22×22 мм), на которой смонтированы два излучающих диода и два фототранзистора, установленных так, что образуют два оптических канала передатчик—приемник. Оптические оси каналов параллельны, межосевое расстояние — около 10 мм.
На рабочем валу станка неподвижно закреплена шторка в виде диска из жёсткого непрозрачного для ИК лучей материала (текстолит, гетинакс, металл, пластик) толщиной 1. 2 мм. Диаметр шторки — 35. 50 мм, диаметр центрального установочного отверстия равен диаметру вала. Плату на станке фиксируют так, чтобы шторка, вращаясь вместе с валом, могла перекрывать собой оба ИК луча.
В шторке пропиливают вырез в форме неполного сектора. Угловая ширина и глубина выреза должны быть такими, чтобы при вращении вала шторка обеспечивала кратковременное прохождение ИК излучения сначала только через один канал, затем через оба и, наконец, только через другой, как это схематически проиллюстрировано на рис. 2. Цветом показаны каналы, открытые в той или иной позиции. Такой порядок следования сигналов с датчика даёт микроконтроллеру возможность определять направление вращения рабочего вала станка.
Счётчик рассчитан на питание от батареи из трёх гальванических элементов АА (R6), но можно использовать любой сетевой блок со стабилизированным выходным напряжением 5 В.
Датчик смонтирован на печатной плате из фольгированного стеклотекстолита толщиной 1 мм. Чертёж платы показан на рис. 3. Токоограничива-ющий резистор R3 припаян со стороны печатных проводников а излучающие диоды и фототранзисторы — с другой.
Остальные детали (кроме батареи GB1 и выключателя SA1) размещены на второй плате, изготовленной из такого же стеклотекстолита. Её чертёж представлен на рис. 4. Все резисторы (кроме R3) на ней размещены со стороны печати поверхностным монтажом, а микроконтроллер, цифровой индикатор, конденсаторы, диод, кнопка SB1 и проволочные перемычки — с противоположной стороны. Микроконтроллер установлен в панель, впаянную в плату.
Плата датчика скреплена с основной двумя скобами, согнутыми из медной лужёной проволоки диаметром 1,2 мм и припаянными к краевым печатным проводникам плат. Для крепления плат к корпусу станка использованы самодельные держатели с ушком для винта, изготовленные из такой же проволоки и также припаянные к основной плате.
Рис. 4
Общий вид одного из конструктивных вариантов счётчика, установленного на намоточном станке, показан на фото рис. 5. Батарея гальванических элементов с выключателем прикреплены к станку сзади.Для датчика, кроме указанных на схеме, можно использовать излучающие диоды SEP8706-003, SEP8506-003, KM-4457F3C, АЛ144А, АЛ108АМ и другие, а фототранзисторы — SDP8436-003, КТФ102А. Очень хорошо подходят также оптопары от старых шариковых компьютерных манипуляторов — мышей; у излучающих диодов короткий вывод—катод, а у фототранзисторов — эмиттер.
Следует заметить, что лучше использовать фототранзисторы в непрозрачном (чёрном) корпусе — в этом случае вероятность сбоев и ошибок в счёте из-за попадания на фотоприемники световых помех от внешних ярких источников будет минимальна. Если же фототранзисторы, имеющиеся в наличии, прозрачные, на каждый из них следует на деть отрезок чёрной ПВХ трубки с отверстием напротив линзы, а весь датчик закрыть от постороннего света накладкой из чёрной бумаги. Если шторка изготовлена из отражающего свет материала, её рекомендуется покрыть чёрной матовой краской.Вместо «поверхностных» резисторов можно использовать МЛТ-0,125 или С2-23 мощностью 0,062 Вт. Кнопка SB1 — любая, подходящая по месту крепления на плате. Вместо E40281-L-O-0-W подойдёт цифровой индикатор FYQ-2841CLR.
Программа микроконтроллера разработана и отлажена в среде Proteus, после чего с помощью программатора ICProg загружена в микроконтроллер. После установки микроконтроллера в панель при первом и последующих включениях счётчика индикатор отобразит знак «минус» во всех знакоместах. Примерно через две секунды на табло появятся нули — это признак готовности счётчика к работе.
В программе предусмотрена функция аварийного обнуления памяти на тот случай, когда в неё попадёт ошибочная информация и микроконтроллер «зависает» (такое бывает крайне редко, но быть может). Для возвращения микроконтроллера в рабочий режим нужно выключить питание счётчика, нажать на кнопку «Обнуление» и, не отпуская её, включить питание. Как только табло отобразит нули, можно продолжать работать, но информация о прежнем числе витков будет, разумеется, утрачена.
В налаживании правильно собранное устройство не нуждается.
ЛИТЕРАТУРА
1. Долгий А. Усовершенствованный реверсивный счётчик. — Радио, 2005, №11, с. 28, 29.
2. Гасанов А., Гасанов Р. Электронный счётчик. — Радио. 2006, № 11, с. 35, 36.
Простой станочек для намотки + счетчик витков из калькулятора
Понадобилось мне в один прекрасный день намотать катушки, и сразу же возник вопрос как считать витки, а в уме считать не хотелось. Вот и пришла мысль соорудить счетчик из калькулятора.
Для этого понадобился лежавший без дела китайский калькулятор, кнопка, пара проводков и изготовленный из куска пластика кулачек для нажатия на кнопку.
Над так называемым «станком» прошу не смеяться: я катушки наматываю редко, даже не знаю, когда это будет в следующий раз. Поэтому собрал всё на скорую руку и не стал городить что-то грандиозное.
Пара уголков, стержень с резьбой, гайки, шайбы разных размеров — всё это в изобилии в ближайшем магазине крепежа по очень демократичным ценам.
Стержень с каркасом катушки свободно вращается в отверстиях уголков.
Очевидное усовершенствование для регулярного применения — напрашивается геркон вместо механической кнопки и магнит на кулачке. Получим бесконтактный датчик оборотов.
Изготовленный пластиковый кулачок и обнаруженная тактовая кнопка.
Провода подпаиваем к выводам кнопки [=] (их нужно найти и зачистить на калькуляторе),
а другие концы на кнопку.
При надобности можно и реверсивно посчитать, на отматывание, просто вмест «+1» набираем «-1» и кооличество витков на счетчике будет уменьшаться.
Спасибо за внимание!
Камрад, рассмотри датагорские рекомендации
🌼 Полезные и проверенные железяки, можно брать
Опробовано в лаборатории редакции или читателями.
Счетчик витков для намоточного приспособления.
Всем доброго времени суток.
Иногда приходится мотать различные катушки, дроссели и малогабаритные трансформаторные обмотки. У меня было приспособление для этого, купленное еще в СССР лет 30 назад ( на корпусе еще и цена выбита — 7 руб.), на нем установлен механический счетчик витков. Он считает конечно, но не сбрасывается в ноль. Приходится либо сматывать его, либо запоминать начальные показания. Это неудобно.
Решил сделать цифровой счетчик на микроконтроллере. За основу взял вот этот — radio-hobby.org/modules/n…/article.php?storyid=1000. Автор (Samopalkin) его несколько раз модернизировал, в результате получилась следующая конструкция.
Вот схема:
Она довольно проста. Входом (S1) является замыкающий или размыкающий геркон. От него сигнал попадает на 3 ногу МК. Имеется две кнопки (S2 и S3). Нажатие на первую (-1) запускает индикацию на уменьшение счета ( при этом на индикаторах должно быть какое-то значение, при нулях обратный счет не производится). Нажатие на вторую (+1) — на увеличение. Кнопка S4 — сброс показаний в ноль. Входы подтянуты к плюсу питания резисторами 1 ком. Индикатор 4-х разрядный, соответственно максимальное значение счета — 9999.
Чтобы начать счет нужно кратковременно нажать одну из кнопок выбора направления счета. Счетчик имеет внутреннюю память, и если выключить и включить опять питание, то на индикаторах сохраняется последнее значение.
Печатную плату я разводил под китайский корпус ( ru.aliexpress.com/item/10…=2114.13010608.0.0.4HYrGL ), который как нельзя лучше подошел для изготовления счетчика. Вот она:
Распаял схему и разместил в корпус:
Проверил работу, замыкая отверткой контакты разъема входного герконового датчика. Схема работает нормально.
Теперь осталось изготовить лицевую панель. Ее я делал в программе FrontDesigner. Распечатал на цветном принтере в масштабе 1:1, заламинировал, обрезал в размер и наклеил на цианоакрилатный клей. Вот, что получилось:
Замыкающий геркон закрепил вертикально на корпусе приспособления со стороны ручки. В ручку с внутренней стороны вклеил маленький ( диаметром 6мм) плоский постоянный магнит. Магнит проходит над герконом при вращении ручки с зазором примерно 3 — 4 мм, сигнал поступает на микроконтроллер и происходит смена значения индикатора младшего разряда на 1 единицу в сторону увеличения или уменьшения, в зависимости от того, какой был выбран режим счета. Вот приспособление в окончательном виде:
Спасибо автору схемы за ее простоту и хорошую повторяемость.
Счетчик витков для намоточного станка
Вариант 1: ATmega8 + Nokia 5110 LCD + питание 3V
В схеме используются Atmega8-8PU (внешний кварц частотой 8MHz), Nokia 5110 LCD и транзистор для обработки импульсов от геркона. Регулятор напряжения на 3,3V обеспечивает питание для всей цепи.
Назначение разъемов:
J1: Питание. На разъем поступает 5V и дальше на стабилизатор L7833 для получения напряжения 3,3V, используемого ATmega8 и LCD.
J2: Разъем для ЖК-дисплея, идущий на Nokia 5110 LCD.
J3: Геркон. Вход импульсов для подсчета микроконтроллером.
J4: Разъем полярности. Он должен быть подключен параллельно обмотке двигателя. Схема слежения была расчитана для 12-вольтового двигателя, но ее можно применить под другое напряжение двигателя, регулируя номиналы делителей напряжения, образованные R3-R4 и R5-R6. Если двигатель подключен к прямой полярности, на PD0 будет высокий лог. уровень, если двигатель подключен к обратной полярности, то на PD1 будет высокий лог. уровень. Эта информация используется в коде для увеличения или уменьшения счетчика.
J5: Сброс счетчика. При нажатии кнопки, произойдет обнуление счетчика.
Разъем ISP: это 10-контактный разъем для программатора USBAsp AVR.
Схема устройства
Фото готового устройства
Вариант 2: ATmega8 + 2×16 HD44780 LCD + питание 5V
Некоторые из моих читателей попросили сделать вариант счетчика в котором используется дисплей 2×16 HD44780 (или меньший вариант 1×16). Для этих дисплеев требуется напряжение питания 5V, поэтому стабилизатор на 3,3V не актуален.
Схема устройства
Автор: Radu Motisan
Исходный код(Си), файлы прошивок для микроконтроллера
Счетчик для намотки витков своими руками
Изготовление намоточного станка своими руками
В работе радиолюбителей и электриков полезны устройства для наматывания медного провода диаметром 1,5 мм на специальную электрическую катушку. В промышленных условиях данный процесс требует скорости и точности. Домашние мастера могут воспроизвести такую технологию. Для этого понадобится самодельный намоточный станок. Для него характерны такие признаки:
Станок для намотки трансформаторов своими руками
Очень часто при создании электронных самоделок приходится наматывать и перематывать различные трансформаторы и катушки. Хорошим помощником в этом не простом и кропотливом деле, может стать простой в изготовлении и надежный самодельный намоточный станок для импульсных трансформаторов от компьютерных блоков питания и обычных трансформаторов с «Ш» образным магнитопроводом.
Конструкция намоточного станка очень простая в изготовлении, под силу даже начинающему токарю. Станок состоит из вала закрепленного на опоре вращения. С правой стороны имеется ручка для вращения вала. На валу с лева направо одето зажимное устройство, левый и правый конуса для надежного крепления трансформаторов.
Чертеж намоточного станка для намотки импульсных трансформаторов
Станок оснащен электронным счетчиком оборотов. Который я приобрел в очень известном китайском интернет магазине всего за 7.5$. Пожалуй это не дорого… За эти деньги счетчик комплектуется герконовым датчиком, крепежной пластиной для герконового датчика и маленьким неодимовым магнитом! На передней панели счетчика находится две овальные кнопки. Левая кнопка «Pause» включает прибор и сохраняет показания счетчика, кнопка «Reset» обнуляет показания прибора. Прибор питается всего от одной 1.5В АА пальчиковой батарейки, расположенной на задней панели счетчика оборотов под пластиковой крышкой. Также имеются разъемы для подключения герконового датчика и дополнительной кнопки «Reset». Обзор счетчика оборотов читайте в этой статье.
Герконовый датчик я прикрутил к алюминиевой стойке с помощью крепежной пластины. Неодимовый магнит закрепил на ручке. Для правильной работы прибора необходимо установить зазор между герконовым датчиком и неодимовым магнитом не более пяти миллиметров. Каждое прохождение неодимового магнита над герконовым датчиком счетчик оборотов считает за один виток.
Метод работы намоточного станка
Станок для намотки – востребованное оборудование, с помощью которого наматывают трансформаторные однослойные и многослойные катушки цилиндрического типа и всевозможные дроссели. Намоточное устройство равномерно распределяет проволоку обмотки с определенным уровнем натяжения. Оно бывает ручным и автоматическим, и работает по такому принципу:
Ручной прибор для укладки провода довольно примитивный, поэтому редко применяются на производстве.
Намоточный станок на механическом приводе позволяет выполнять сложную обмотку:
Он функционирует с помощью электрического двигателя, который задает движение промежуточного вала с использованием ременной передачи и трехступенчатых шкивов. Большую роль при этом играет фрикционная муфта сцепления. Благодаря ей станок работает плавно, без толчков и обрывов проволоки. Шпиндель с закрепленной оправой, на которую надета катушка, производит запуск счетчика. Намоточный станок настраивается с помощью винта под любую ширину катушечного каркаса.
Современные модели оснащены цифровым оборудованием. Они работают посредством специально заданной программы, которая хранит информацию в запоминающем устройстве. Значение длины и диаметра провода позволяет точно определить точку пересечения линий.
Счетчик витков для намоточного станка
Каждому радиолюбителю, хотя бы раз в жизни возможно приходилось наматывать катушки, перематывать трансформаторы с помощью самодельного намоточного станка, подсчитывая в уме количество намотанных витков. Намотав таким способом пару трансформаторов решил, во чтобы то ни стало, автоматизировать процесс подсчета витков.
К тому же, мне нужно было перемотать еще четыре трансформатора от компьютерного блока питания, а в уме считать витки не очень то хотелось, решил купить в очень известном китайском магазине счетчик количества витков всего за 7.5$ и установить на свой самодельный намоточный станок. Как сделать намоточный станок читайте здесь.
На передней панели счетчика находится две кнопки «Pause» и «Reset». Левая кнопка включает прибор и сохраняет текущие показания счетчика. Правая кнопка сбрасывает текущие показания счетчика в ноль.
Питается прибор от одной 1.5В батарейки типа АА, отсек для которой находится на задней панели прибора под пластиковой крышкой с фиксатором. Также имеются клеймы для подключения герконового датчика с надписью «Count» и клеймы для выносной кнопки «Reset». Счетчик комплектуется герконовым датчиком, крепежной пластиной и маленьким неодимовым магнитом. За 7.5$ очень хорошая комплектация.
С помощью крепежной пластины легко закрепить герконовый датчик в нужном положении и на любом устройстве.
Для точного подсчета зазор между неодимовым магнитом и герконовым датчиком не должен превышать пяти миллиметров. Иначе счетчик не сможет точно подсчитывать количество оборотов вала.
Надеюсь, что после подробного обзора счетчика количества оборотов вы легко найдете ему хорошее применение в своих самоделках.
Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!
Рекомендую посмотреть видеоролик о счетчике количества оборотов для намоточного станка.
Механизм намоточного станка
Станок для намотки классифицируют по группам:
Намоточный станок, выполняющий рядовую укладку проволоки, состоит из таких элементов:
Стандартная модель прибора для укладки провода несколькими перегибами за один оборот предполагает наличие таких элементов:
Намотка проволоки на тороидальные сердечники осуществляется посредством специализированного оборудования кольцевого типа:
Необходимые материалы и комплектация для изготовления
Чтобы собственноручно сделать станок для намотки проволоки на круглый каркас, понадобится несколько деталей.
Станина из листового материала, скрепленного сварочным методом. Оптимальная толщина основания – 15 мм, боковых частей – 6 мм. Устойчивость конструкции обеспечивается ее тяжестью:
Важные составляющие конструкции станка – валы:
Втулка укладчика диаметром и длиной по 20 мм. Ее внутренняя резьба совпадает с резьбой нижнего вала.
Шкивы – трехступенчатые, выточенные из стали, общей толщиной не более 20 мм. В противном случае придется увеличить хвостовики верхнего и нижнего валов. Каждый блок содержит три канавки с разным диаметром, в зависимости от сечения проволоки. Их ширина определяется пассиками. Такая комбинация обеспечивает большое разнообразие шагов намотки провода.
Устройство укладчика проволоки
Укладка и намотка проволоки осуществляются за счет трех пластин, скрепленных между собой винтами диаметром 20 мм. В верхней части делают небольшое отверстие 6 мм, куда вставляют винт регулировки натяжения:
Изготовление счетчика витков
Для определения количества намотанных витков на станке необходим специальный счётчик. В самодельном станке устройство делают так:
Благодаря этим элементам, оборудование становится компактным и не занимает много места.
Добавить ссылку на обсуждение статьи на форуме
РадиоКот >Схемы >Цифровые устройства >Автоматика >
Теги статьи: | Добавить тег |
Простой счетчик витков на Attiny13a
Автор: Regerald Опубликовано 27.01.2017 Создано при помощи КотоРед.
Пришлось недавно мотать трансформаторы с большим количеством витков — работа даже чем-то приятная, но вот со счёта я всё время сбиваюсь. Обычные решения вроде калькулятора с герконом на знаке «равно» не устраивали — за отсутствием того самого калькулятора, да и не эстетично это как-то. Как и не эстетично использовать для этих целей Атмеги, Ардуины и более высокие контроллеры. Готовых схем в интернете не нашлось, а если и были, то сопровождались десятками деталей и бородой из проводов. Пришлось придумывать самому, ибо не может столь простое устройство требовать столь сложной схемы.
Из подходящих деталей нашeл контроллеры Attiny13a, светодиодный семисегментный дисплей на «драйвере» из шифт-регистров, аккумулятор от сотового телефона, а также пары светодиод-фототранзистор, которые раньше служили датчиками уровня краски струйного принтера.
Дисплеи такого типа продаются с уже распаянной платой на два восьмибитных шифт-регистра 74HC595, и стоят ненамного дороже чем просто семисегментные дисплеи. Основной их плюс в том, что можно обойтись всего тремя портами ввода данных: DIO, CKL и RCK. А портов как известно на Attiny13a совсем немного — всего три на дисплей и два на датчики. Также отпадает надобность в четырёх транзисторах, что ставятся при использовании обычной динамической индикации, требующей целых 7+4 портов микроконтроллера.
Датчиками служат две пары светодиод-фототранзистор (например ITR9608), расположенные рядом друг с другом. В данном случае они используются как эмиттерные повторители, притягивая каждый свой порт на высокий уровень, когда фототранзистор принимает свет. В принципе, можно обойтись и одним датчиком (естественно, изменив прошивку), но тогда счетчик не будет «видеть» в какую сторону вы вращаете вал. А это неудобно, если приходится отматывать и переукладывать витки.
Вращая вал намоточного станка мы вращаем также диск с прорезью, находящийся между светодиодами и фототранзисторами, таким образом периодически прерывая световые лучи. Прорезь должна быть достаточно широкой чтобы одновременно пропускать свет на оба фототранзистора. Подробности работы программы можно понять из исходников, которые я постарался получше комментировать. Прошивку делал используя USBASP-программатор под линуксом, при компиляции исходников надо указать стандарт c99. Исходники прилагаются, так как я исповедую «Open Source».
Схема всего счетчика представлена ниже. Изначально в схеме предполагалось использовать кнопку сброса, но затем я понял что она по сути не нужна — можно просто щелкнуть туда-сюда выключателем.
Печатную плату рисуем в вашей любимой программе, или берём готовую в случае если нашли такие же детали как у меня. Я не стал заморачиваться с ЛУТ — в основном по причине отсутствия рабочего утюга. Просто накернил места отверстий, нарисовал дорожки специальным маркером и вытравил плату, использовав тот самый состав из перекиси водорода + соли + лимонной кислоты. Облудив и распаяв детали, можно проверить работу схемы.
Далее кончается электроника и начинается механика — тут уже дело вкуса и пристрастий. Кто-то может прикрутить электропривод, мне же нравится крутить вручную. Это удобнее когда провод очень тонкий и легко рвётся — рука лучше чувствует натяжение.
Устройство готово, инспектора довольны
Прошивка микроконтроллера Печатная плата Исходники программы на «СИ»
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? | |
61 | 3 | 0 |
Принцип работы на станке
Трудиться на сконструированном станке несложно. Технологический процесс требует выполнения определенных действий:
Под разную толщину металлического провода соотносят шкив с шагом намотки.
Видео по теме: Намоточный станок с укладчиком — своими руками
СЧЁТЧИК ВИТКОВ
Итак, из внутреннего содержимого оставляем цифровые колёса, зубчатые шестерни, оси для их посадки и стойки-держатели осей которые собираем «по месту» (так, как они и стояли до разборки). Оси в левую стойку желательно вклеить. На цифровых колёсах, рядом с центральным отверстием есть ещё одно – сборочное, им колесо надевается на шпильку (ровную и упругую проволочку, которая убирается перед установкой колпака). Без этой помощницы ничего не выйдет. При этом перед креплением второй стойки не забываем надеть на ведущее колесо резиновый пассик (лучше плоский) подходящей длины.
В донной части и в колпаке, по центру, делаем сквозные отверстия (например диаметром 3мм) для дальнейшего их скрепления винтом с гайкой. Это обязательно, ибо в процессе эксплуатации будут присутствовать сотрясения конструкции, при которых всё нами собранное будет постоянно разваливаться (проверено). Также в колпаке делается пропил шириной чуть менее (чтоб не слетал пассик) ведущего цифрового колеса и длиной через весь колпак. Не лишними будут ещё одно – два отверстия в боковой стенке колпака, они пригодятся при его установке на место, ибо при этом нужно попасть верхними шлицами на стойках в соответствующие пазы (кстати, левый и правый разные размером – не путать) внутри колпака. Вот через них отвёрточкой и направлять. В донной части нужно предусмотреть пару отверстий для крепления винтами или шурупами всей, уже собранной конструкции к намоточному устройству.
Как и в каком месте крепить, собранный счётчик к намоточному устройству – полная свобода творчества. А вот их рабочее соединение — вот такое:
На ведущий вал намоточного устройства устанавливается шкив (это в идеале) или втулка из мягкой пластмассы с внутренним диаметром чуть менее 6 мм (чтобы одевались внатяг) и наружным диаметром при котором один поворот ведущего вала будет соответствовать одному повороту ведущего цифрового колеса счётчика. Самый простой вариант – на подходящую полихлорвиниловую или толстую пластмассовую трубку длиной 10 мм наматывается достаточной толщиной (ну скажем до диаметра 20 мм) узкий скотч (можно изоленту, но хуже) и начинаем настройку, при необходимости отматывая или подматывая скотч до оптимальной толщины.
Запоминающий реверсивный счётчик витков
Ознакомившись с рядом опубликованных в журнале конструкций счётчиков различного назначения (например, [1, 2]), я принял решение разработать свой вариант счётчика витков, в котором использована энергонезависимая память микроконтроллера. В результате удалось создать простой и удобный в работе счётчик витков для намоточного станка, не содержащий дефицитных деталей.
Он способен считать от 0 до 9999 оборотов вала, после чего показания индикатора обнуляются и счёт начинается заново. При вращении вала в обратную сторону индикатор уменьшает показания на единицу на каждый оборот.
Рис. 1
Счётчик состоит из нескольких узлов (рис. 1). Основой конструкции служит микроконтроллер DD1, к которому через токоограничительные резисторы R10—R16 подключён четырёхразрядный светодиодный индикатор HG1. Две оптопары — излучающий ИК диод— фототранзистор (VD2VT1, VD3VT2), — образующие датчик числа оборотов рабочего вала станка, формируют импульсы низкого уровня, по которым микроконтроллер определяет направление вращения и число оборотов вала. Предусмотрена кнопка SB1 для обнуления памяти, а также вспомогательные цепи: R2C2, работающая в составе встроенного тактирующего генератора микроконтроллера, VD1C1, сохраняющая напряжение питания, необходимое для перехода микроконтроллера в режим SLEEP, и R6R8, следящая за напряжением питания счётчика.
Известно, что микроконтроллеры семейства PIC довольно капризны при работе с EEPROM (особенно, когда запись в неё происходит автоматически). Уменьшение напряжения питания может исказить содержимое памяти При работе счётчика линия RB1 (вывод 7) микроконтроллера, к которой подключена цепь R6R8, опрашивается на наличие напряжения питания, и если оно пропадает, то благодаря цепи VD1C1 микроконтроллер успевает перейти в спящий режим, тем самым блокируя дальнейшее выполнение программы и защищая информацию в EEPROM. В процессе счёта микроконтроллер будет сохранять в памяти числа после каждого оборота рабочего вала станка. При каждом очередном включении питания индикатор HG1 отобразит то число, что было до отключения. Датчик представляет собой небольшую печатную плату (22×22 мм), на которой смонтированы два излучающих диода и два фототранзистора, установленных так, что образуют два оптических канала передатчик—приемник. Оптические оси каналов параллельны, межосевое расстояние — около 10 мм. На рабочем валу станка неподвижно закреплена шторка в виде диска из жёсткого непрозрачного для ИК лучей материала (текстолит, гетинакс, металл, пластик) толщиной 1. 2 мм. Диаметр шторки — 35. 50 мм, диаметр центрального установочного отверстия равен диаметру вала. Плату на станке фиксируют так, чтобы шторка, вращаясь вместе с валом, могла перекрывать собой оба ИК луча. В шторке пропиливают вырез в форме неполного сектора. Угловая ширина и глубина выреза должны быть такими, чтобы при вращении вала шторка обеспечивала кратковременное прохождение ИК излучения сначала только через один канал, затем через оба и, наконец, только через другой, как это схематически проиллюстрировано на
рис. 2. Цветом показаны каналы, открытые в той или иной позиции. Такой порядок следования сигналов с датчика даёт микроконтроллеру возможность определять направление вращения рабочего вала станка.