Как сделать уравнение 5 класса
Решение сложных уравнений. 5 класс
Под сложными (составными) уравнениями мы понимаем уравнения, которые содержат два или более арифметических действия.
Решение таких уравнений выполняется по тем же правилам, которые мы рассмотрели на странице «Решение простых уравнений 5 класс» в этой же теме.
Но решение составных уравнений производится в определённой последовательности.
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Всё верно. Значит уравнение решено правильно.
Другой способ решения сложных уравнений
Некоторые сложные (составные уравнения) можно решать другим способом. Зная и умея применять свойства сложения и вычитания, а также свойства умножения и деления, уравнения решаются следующем образом.
Чтобы из суммы отнять число, нужно это число вычесть из одного слагаемого и прибавить результат вычитания к другому слагаемому.
Упрощение выражений в уравнениях
Если в уравнении встречается выражения, которые можно упростить, то вначале упрощаем выражения, и только после этого решаем уравнение.
Левую часть уравнения можно упростить. Сделаем это.
Теперь решим простое уравнение по правилу нахождения неизвестного множителя.
Урок 17 Бесплатно Уравнение
Часто приходится описывать реальную ситуацию, процесс, явление с помощью математического языка.
Математический язык- универсальный язык, с помощью него можно однозначно и кратко описать многие закономерности, процессы, задачи и т.д.
Связать реальную жизнь и математическое описание любой ситуации нам позволяет математическая модель.
Описывая реальность с помощью математического языка, люди создают математические модели, превращающие слова в формулы, неравенства, равенства, уравнения и т.п.
Математическая модель дает возможность решать огромное количество практических (природных, технических, научных, экономических, социальных и других) задач.
Математические модели делят на:
На данном уроке подробно рассмотрим одну из аналитических математических моделей- уравнение.
Выясним, что такое уравнение и что называют корнем уравнения.
Рассмотрим простейшие виды уравнений.
Разберем способы и приемы решения уравнений с одним неизвестным.
Рассмотрим алгоритм и примеры решения задач с помощью уравнений.
Уравнения
Часто при решении задач приходится составлять равенства.
Два выражения (числовые или буквенные), соединенные знаком равно «=», образуют равенство.
В математике различают два вида равенств: тождества и уравнения.
Тождества- это числовые равенства, а также равенства, которые выполняются при всех допустимых значениях переменных, входящих в него.
Уравнение- это равенство, содержащее неизвестные числа, обозначенные буквами, значение которых можно определить.
Неизвестное число, входящее в уравнение, называют неизвестным членом уравнения (или просто «неизвестным»).
Чаще всего в математике неизвестные величины обозначают маленькими буквами латинского алфавита x, y, z.
У меня есть дополнительная информация к этой части урока!
Долгое время в математических выкладках не использовали буквенные обозначения и записывали выражения и уравнения словами.
В 1591 году французский ученый философ Франсуа Виет ввел буквенные обозначения. Он предложил использовать гласные буквы латинского алфавита для названия величин, а согласные для неизвестных.
Позже другой французский ученый, философ Рене Декарт предложил иную систему обозначений, связанную с латинскими буквами (которую используют по сегодняшний день).
Для неизвестных было предложено использовать последние буквы латинского алфавита (х, у, z), а для известных величин первые буквы латинского алфавита (а, b, c)
Пример 1:
4 + х = 18 является уравнением с неизвестной х.
Все три записи являются равенствами, в каждом из них есть неизвестное число, обозначенное буквой.
Пример 2:
у + 2 > 12 не является уравнением, так как не является равенством.
Решить уравнение- это значит найти неизвестное число, при котором из уравнения получается верное равенство.
Уравнение считается решенным, если все его решения найдены или доказано, что уравнение решения не имеет.
Значение неизвестного, обращающее уравнение в верное равенство, называют корнем уравнения.
Следовательно, если в уравнение вместо неизвестной подставить ее численное значение и получится верное числовое равенство, то это значение неизвестной будет решением этого уравнения.
1) Пусть х равно 6, получаем
9 ≠ 10 (девять не равно десяти)
При подстановке вместо неизвестного число 6, получаем неверное числовое равенство 9 ≠ 10, т.е. число 6 не является корнем уравнения.
2) Пусть х равно 5, получаем
10 = 10
При подстановке вместо неизвестного число 5, получаем верное числовое равенство 10 = 10, т.е. число 5 является корнем уравнения.
Уравнение может иметь разное количество корней: существуют уравнения, имеющие один единственный корень, уравнения, имеющие два, три корня.
Встречаются уравнения, вообще не имеющие верного решения, и даже такие уравнения, решением которых являются бесконечное множество решений.
0 ⋅ y = 0 уравнение имеет бесконечное множество верных решений, так как при умножении любого числа на 0, получается 0.
Уравнение, содержащее одну неизвестную, называют уравнением с одной неизвестной.
Уравнения с большим количеством неизвестным называют соответственно уравнением с двумя, тремя и т.д. неизвестными.
Такие уравнения и их решение будете рассматривать в старших классах.
Любое уравнение имеет левую и правую часть.
Выражение, стоящее слева от знака равно, называют левой частью уравнения, а выражение, которое стоит справа, правой частью уравнения.
Каждый компонент, из которых состоит уравнение, называют членами этого уравнения.
Чаще всего уравнение записывают в левой части страницы, справа делают письменные вычисления (вычислительные операции).
При решении уравнения каждое новое равенство записывается с новой строки (т.е. решение оформляется в виде столбика равенств).
Таким образом, знак равенства при решении уравнения используют только один раз в каждой строке.
Пройти тест и получить оценку можно после входа или регистрации
Памятка : «Решение уравнений», 5 класс
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
(Х – 87) – 27 = 36; Х-87 в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
Х – 87 = 63; х в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
Проверка: (150 – 87) – 27 = 36;
87- ( 41 + У ) = 22; 41 + У в уравнении является вычитаемым . Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность
41 + У = 65; У в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое
Проверка: 87- ( 41 + 24 ) = 22;
(у – 35) + 12 = 32; у – 35 в уравнении является слагаемым. Чтобы найти неизвестное слагаемое , нужно из суммы вычесть известное слагаемое
у – 35 = 20; у в уравнении является уменьшаемым. Чтобы найти неизвестное уменьшаемое , нужно к разности прибавить вычитаемое
468 – ( 259 – х) = 382; 468 – 259 + х = 382;
Решение уравнений, приведение подобных слагаемых
Пример 1: 8х-х=49 ; сначала запишем знаки умножения,
8*х-1*х=49 ; затем воспользуемся распределительным свойством (вынесем общую переменную за скобки)
Пример 2: 2х+5х+350=700 ; воспользуемся распределительным свойством (вынесем общую переменную за скобки)
Х*(2+5)+350=700 ; приведем подобные слагаемые (т.е. сложим числа в скобках)
2*50 + 5*50 + 350 = 700;
100 + 250 + 350 = 700;
Пример: 270: х + 2 = 47;
Чтобы найти неизвестное слагаемое нужно из суммы вычесть известное слагаемое
Пример: а : 5 – 12 = 23;
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-858839
Не нашли то, что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Во всех педвузах страны появятся технопарки
Время чтения: 1 минута
Учительница из Киргизии победила в конкурсе Минпросвещения РФ «Учитель-международник»
Время чтения: 2 минуты
Зарплаты педагогов Ростовской области вырастут в среднем на 10-15%
Время чтения: 2 минуты
Названы главные риски для детей на зимних каникулах
Время чтения: 3 минуты
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
В Минпросвещения рассказали о формате обучения школьников после праздников
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Решение простых уравнений. 5 класс
Уравнение — это равенство, содержащее букву, значение которой надо найти.
В уравнениях неизвестное обычно обозначается строчной латинской буквой. Чаще всего используют буквы « x » [икс] и « y » [игрек].
Решив уравнение, всегда после ответа записываем проверку.
Информация для родителей
Уважаемые родители, обращаем ваше внимание на то, что в начальной школе и в 5 классе дети НЕ знают тему «Отрицательные числа».
Поэтому они должны решать уравнения, используя только свойства сложения, вычитания, умножения и деления. Методы решения уравнений для 5 класса приведены ниже.
Не пытайтесь объяснить решение уравнений через перенос чисел и букв из одной части уравнения в другую с изменением знака.
Освежить знания по понятиям, связанным со сложением, вычитанием, умножением и делением вы можете в уроке «Законы арифметики».
Решение уравнений на сложение и вычитание
Как найти неизвестное слагаемое |
x + 9 = 15
уменьшаемое
x − 14 = 2
вычитаемое
Чтобы найти неизвестное слагаемое, надо от суммы отнять известное слагаемое.
Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.
Чтобы найти неизвестное вычитаемое, надо от уменьшаемого отнять разность.
x = 15 − 9
x = 6
Проверка
6 + 9 = 15
15 = 15
x = 14 + 2
x = 16
Проверка
16 − 2 = 14
14 = 14
x = 5 − 3
x = 2
Проверка
Решение уравнений на умножение и деление
Как найти неизвестный множитель |
y · 4 = 12
делимое
y : 7 = 2
делитель
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Чтобы найти неизвестное делимое, надо частное умножить на делитель.
Чтобы найти неизвестный делитель, надо делимое разделить на частное.
О решении уравнений в 5–6-х классах
Разделы: Математика
маленький пример”: 6:2=3 6=3*2
Таким образом, оставляя одно действие, заключая все остальное в “форточку”, ребенок придет к простейшему уравнению. Прием “форточка” вызывает интерес детей, привлекает их внимание, надолго запоминается. Кроме того, его использую как пропедевтику способа замены переменных.
Уже в шестом классе начинаю вводить способ решения уравнений, сводящихся к линейным, основанный на переносе слагаемых. Дети умеют раскрывать скобки, приводить подобные. Но при этом обязательно показываю, что, например, уравнение
Далее предлагаю проекты уроков в 6 классе, на котором ввожу способ решения уравнений с переносом слагаемых. На уроках используются презентации, выполненные в программе PowerPoint. Более эффективно использовать интерактивную доску.
Тема урока: Решение уравнений
Оборудование: интерактивная доска, сканер, учебник “Математика-6”, И.И. Зубарева, А.Г. Мордкович.
Этап урока | Цель этапа урока | Содержание | Методический комментарий |
1. Проверка домашней работы | Закрепление навыка самопроверки, умения находить свои и чужие ошибки, объяснять их причину; |
Актуализация знаний по теме урока.
2. Решите уравнение:
Какие рассуждения вы проводили при решении первого уравнения из домашней работы? Второго уравнения?
1) Попробуйте провести аналогичные рассуждения для решения уравнения
Как надо изменить уравнение, чтобы можно было применить имеющиеся знания по решению уравнений?
4) Ребята! Как бы вы поступили при решении уравнения
5) А такого уравнения
6) Хорошо, а теперь давайте попробуем составить алгоритм решения уравнений, похожих на уравнение 7(2+у)-3у=5у-6.
1) Учитель создает проблемную ситуацию.
Учащиеся делают вывод о том, что известные им приемы не работают.
2) Дети говорят о том, что было бы хорошо, если бы все переменные были в одной стороне уравнения.
3) Далее учитель показывает, как перенести слагаемые из одной части уравнения в другую.
4) Перенесли бы слагаемые 14 и 5у, затем привели подобные и нашли значение переменной.
5) Сначала бы раскрыли скобки, затем выполнили перенос слагаемых, приведение подобных и нашли значение переменной.
6) Формулируют последовательность действий и вклеивают в свои справочники алгоритм решения уравнения, в котором есть скобки и переменная может находиться в разных частях уравнения.
е)-3(5а-1)+4а = 2а+7(5-3а)
Самопроверка по образцу, который дает учитель.
Синим цветом выделены уравнения повышенной для этого урока сложности, их выполняют те ученики, которые быстрее других справляются с работой.
Как вы думаете, это всегда будет так?
Давайте наше предположение проверим.
Предлагаю в группах обсудить решение следующих уравнений:
1 группа – решите уравнение 3х-12=0;
2 группа – решите уравнение
3 группа – решите уравнение
Сколько корней получилось у ваших уравнений?
Вывод: Уравнение вида ax = b может иметь один корень, может не иметь корней, может иметь бесконечно много корней.
Учащиеся работают в группах.
Учитель оказывает помощь группам при необходимости.
Организует обсуждение полученных результатов, помогает сделать выводы.
Таблица с выводами (заранее распечатанная) вклеивается в справочник
Тема урока: Решение уравнений.
Оборудование: интерактивная доска, компьютерный класс, учебник “Математика-6”, И.И. Зубарева, А.Г. Мордкович.
Этап урока | Цель этапа урока | Содержание | Методический комментарий |
1. Проверка домашней работы | Закрепление навыка самопроверки, умения находить свои и чужие ошибки, объяснять их причину; |
Актуализация знаний по теме урока.
в) 17+3(15-с)=(4-с)-2(с-5).
Учитель оказывает помощь слабоуспевающим ученикам.
3) Решение уравнений (проектор переводится в режим “пауза”), один ребенок работает на компьютере, а затем работа проверяется детьми.
9 человек проходят тестирование на компьютерах, остальные самостоятельно работают на местах.
- Как сделать скрутку в распределительной коробке
- Как узнать что на даче отключили электричество