Какие материалы более морозостойкие чем пористые
Морозостойкость строительных материалов
Морозостойкость строительных материалов –способность материала, насыщенного водой, выдерживать многочисленное попеременное замораживание, а также оттаивание без значительного уменьшения прочности и без визуальных обнаруживаемых признаков разрушения. Степень морозостойкости определяется количеством циклов заморозки/оттаивания, которые проводят в лабораторных условиях.
От морозостойкости в основном зависит долговечность материалов, применяемых в наружных зонах конструкций различных зданий и сооружений. Разрушение материала при таких циклических воздействиях связано с появлением в нем напряжений, вызванных как односторонним давлением растущих кристаллов льда в порах материала, так и всесторонним гидростатическим давлением воды, вызванным увеличением объема при образовании льда примерно на 9% (плотность воды равна 1, а льда —0,917). При этом давление на стенки пор может достигать при некоторых условиях сотен МПа. Очевидно, что при полном заполнении всех пор и капилляров пористого материала водой разрушение может наступить даже при однократном замораживании. Однако у многих пористых материалов вода не может заполнить весь объем доступных пор, поэтому образующийся при замерзании воды лед имеет свободное пространство для расширения.
Материал считают выдержавшим испытание, если после заданного количества циклов замораживания и оттаивания потеря массы образцов в результате выкрашивания и расслаивания не превышает 5 %, а прочность снижается не более чем на 15 % (для некоторых материалов на 25 %).
Для определения морозостойкости иногда используют ускоренный метод, например, с помощью сернокислого натрия. Кристаллизация этой соли из насыщенных паров при ее высыхании в порах образцов воспроизводит механическое действие замерзающей воды, но в более сильной степени, так как образующиеся кристаллы крупнее (значительное увеличение объема). Один цикл таких испытаний приравнивается 5-10 и даже 20 циклам прямых испытаний замораживанием. О морозостойкости материала можно косвенно судить по величине коэффициента размягчения. Большое понижение прочности вследствие размягчения материала (больше 10 %) указывает, что в материале есть глинистые или другие размокающие частицы, что отрицательно сказывается и на морозостойкости материала.
От морозостойкости зависит долговечность строительных материалов в конструкциях, подвергающихся действию атмосферных факторов и воды.
Что такое морозостойкость материала?
Морозостойкость — способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения прочности. Систематические наблюдения показали, что многие материалы в условиях попеременного насыщения водой и замораживания постепенно разрушаются.
Морозостойкость материала зависит от плотности и степени насыщения водой их пор. Плотные материалы морозостойки. Из пористых материалов морозостойкостью обладают только такие, у которых имеются в основном закрытые поры или вода занимает менее 90 % объема пор.
Материал считают морозостойким, если после установленного числа циклов замораживания и оттаивания в насыщенном водой состоянии прочность его снизилась не более чем на 15 %, а потери в массе в результате выкрашивания не превышали 5 %. Если образцы после замораживания не имеют следов разрушения, то степень морозостойкости устанавливают по коэффициенту морозостойкости (Kf).
Для морозостойких материалов Kf не должен быть менее 0,75. По числу выдерживаемых циклов попеременного замораживания и оттаивания (степени морозостойкости) материалы имеют марки F10, 15, 25, 35, 50, 100, 150, 200 и более. В лабораторных условиях замораживание образцов производят в холодильных камерах.
Один-два цикла замораживания в камере дают эффект, близкий к трех– пятилетнему действию атмосферы. Существует также ускоренный метод испытания, по которому образцы погружают в насыщенный раствор сернокислого натрия и затем высушивают при температуре 100–110 °C.
Образующиеся при этом в порах камня кристаллы десятиводного сульфата натрия (со значительным увеличением объема) давят на стенки пор еще сильнее, чем вода при замерзании. Такое испытание является особо жестким. Один цикл испытания в растворе сернокислого натрия приравнивается к 5—10 и даже 20 циклам прямых испытаний замораживанием.
Какие материалы более морозостойкие чем пористые
Время работы: пн-пт с 9:00 до 17:00 сб-вс с 10:00 до 15:00
Морозостойкость строительных материалов – это возможность материала сохранить свою структуру и качества во время непрерывного изменения воздействующих на материал температур. Таким образом, морозостойкость является определяющим физическим свойством строительных материалов, важность которого трудно переоценить.
Пористость материалов.
По ходу эксплуатации, строительные материалы подвергаются процессу старения, а также имеют свойство разрушаться. Тут имеет важное значение степень пористости материалов, а основная природа их разрушения связана с попаданием воды в поры, которые в свою очередь расширяются при заморозках, от чего увеличивается их объем. В то время как материал оттаивает, его объем постепенно становится меньше.
Когда материал находится в непрерывном процессе оттаивания-замерзания для него это равносильно многоразовой нагрузке, приводящей к износу и разрушению материала. Наиболее важным качеством, является морозостойкость строительных материалов таких как:
По ходу разрушения, материал видоизменяется, также изменяется его прочность и масса. Исследовав эти черты, мы можем сделать вывод о степени морозостойкости того, или иного материала. Чтобы проанализировать свойства строительных материалов на прочность к повреждениям и на способность сохранения массы, нам следует отобрать минимум 5 образцов. На испытание прочности выбирается около 20 образцов, затем 10 из которых берутся в качестве контрольных. После чего контрольные образцы помещаются в водную ванную с гидравлическим затвором.
Марки и циклы, измеряющие степень морозостойкости.
Морозостойкость строительных материалов оценивается количеством перенесенных циклов и соответствующей маркой. Для определения марки, материалы испытывают циклами поочередного замораживания и оттаивания. Материал должен выдержать нагрузку без уменьшения прочности на сжатие, от 15 % и выше, после проведенных испытаний образцы должны оставаться без заметных повреждений, а также потеря массы образца не должна превышать 5%.
Выбор марки по морозостойкости определяется с учетом типа конструкции, условиями эксплуатации и внешними климатическими условиями. В основном виды легкого бетона и кирпича имеют 15, 25 и 35 марку. Виды тяжелых бетонов имеют марку 50,100,200, а самый прочный гидротехнический бетон, обозначается 500 маркой.
Испытание морозостойкости.
Морозостойкость материалов
Морозостойкость – способность материала в насыщенном водой состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и допустимого снижения прочности. Морозостойкость материалов связана с их плотностью, пористостью и водостойкостью. Плотные материалы значительно более морозостойки, чем пористые.
При замерзании воды в порах материала объем ее увеличивается примерно на 9 %, что сопровождается давлением льда на стенки пор, вызывающим разрушение материала. Однако во многих пористых материалах вода не может заполнить более 90 % объема доступных пор и образованный лед имеет пространство для свободного расширения. В связи с этим разрушение таких материалов происходит только после их многократного попеременного замораживания и оттаивания.
Испытание материалов на морозостойкость производят в холодильных камерах путем замораживания насыщенных водой образцов при температуре минус 20 ± 5°С и последующего их оттаивания и воде при температуре плюс 20 ± 5°С.
После заданного количества циклов попеременного замораживания и оттаивания определяют прочность на сжатие образцов, не имеющих видимых признаков разрушения, устанавливают степень морозостойкости, вычисляя коэффициент морозостойкости по формуле Кмрз = R‘ ‘сж / R‘сж, где R‘ ‘сж и R‘сж – пределы прочности при сжатии образцов материала, полученные соответственно после испытания на морозостойкость, и образцов, насыщенных водой,— до замораживания. Для морозостойких материалов Кмрз — 0,75 (что соответствует предельно допустимому снижению прочности не более чем на 25 %).
Если после заданного числа циклов замораживания и оттаивания потеря в массе образцов из-за выкрашивания и расслаивания не превышает 5 %, а прочность на сжатие снижается не более чем на 25 %, то материал считается морозостойким.
По степени морозостойкости, т. е. числу выдержанных циклов, строительные материалы подразделяют на марки (Мр3) 10, 15, 25, 35, 50, 100,?150, 200, 300, 400, 500. К разным по назначению материалам предъявляются соответственно различные требования по морозостойкости. Так, кирпич глиняный обыкновенный должен иметь Мрз = 15, применяемые в наружных облицовках граниты— Мрз = 50, мраморы – Мрз = 25, известняки-ракушечники и туфы – Мрз = 15, асбестоцементные кровельные материалы – Мрз = 304 – 50; бетоны в гидротехнических сооружениях – Мрз= 200 и т. д.
Морозостойкость и водонепроницаемость бетона
Устойчивость бетона к воздействию влаги и низких температур является важным показателем его качества и долговечности. Материал способный долгое время выдерживать отрицательное воздействие внешних факторов очень востребован в строительстве особенно при возведении монолитных железобетонных конструкций.
Водонепроницаемость бетона
Сопротивление поверхности бетонных изделий проникновению воды дает возможность использования этих материалов при строительстве гидротехнических и подземных сооружений, мостов, набережных, фундаментных опор и других конструкций. Водонепроницаемость бетона обозначается буквой «W» и показывает внешнее давление воды, при котором она начинает проникать через поры на поверхности в тело бетонного монолита. Определенная стандартом величина этого показателя может находиться в пределах W2-W20. Для большинства зданий и сооружений сопротивление проникновению влаги у бетонных элементов марка бетона по водонепроницаемости не превышает W6.
Самый эффективный способ снижения водопроницаемости бетона это уменьшить пористость поверхностных слоев. Этого можно добиться:
В качестве дополнительной меры, повышающей уровень защиты от проникновения влаги в структуру бетона, на его поверхность наносится гидроизоляция. Для этого используют водостойкие лакокрасочные материалы, полимерные пропитки, битумные растворы и расплавы, образующие водонепроницаемое покрытие и хорошо прилегающие к бетонной поверхности.
Морозостойкость бетона
Для бетонирования при минусовой температуре применяются специальные морозостойкие бетоны. Эта способность застывшей бетонной смеси выдерживать многократные циклы заморозки и оттаивания сохраняя при этом на длительное время свои технические характеристики неизменными. Испытательная проверка данного параметра производится до тех пор, пока величина снижения прочности бетона не достигнет пяти процентов. После этого количество пройденных циклов снижается в нижнюю сторону до круглого десятка.
При классификации обозначается латинской буквой «F» и сопровождается цифровым значением 50 — 1000. При наличии специальных добавок максимальное значение «F» может быть более 300, но такие бетонные смеси при массовом строительстве в условиях умеренного климата применяются мало из-за их высокой стоимости.
Марки бетона по морозостойкости
При определении требований к бетону по морозостойкости следует учитывать климатические условия, глубину промерзания грунта и возможную скорость изменения температуры наружного воздуха. Стандартная классификация определяется в ГОСТ 10060-2012 и подразделяет все производимые смеси на 5 классов по морозостойкости:
Характеристики различных бетонных смесей согласно ГОСТ
Определения стандарта показывают, что наиболее к распространенным маркам в России следует отнести бетоны с показателями F150 – F250. Классификация по ГОСТ не распространяется на бетоны используемые для дорожного строительства и взлетных полос аэродромов.
Таблица морозостойкости и водонепроницаемости бетона различных марок и класс
Марка бетона | Класс бетона | Морозостойкость F | Водонепроницаемость W |
м100 | В-7,5 | F50 | W2 |
м150 | В-12,5 | F50 | W2 |
м200 | В-15 | F100 | W4 |
м250 | В-20 | F100 | W4 |
м300 | В-22,5 | F200 | W6 |
м350 | В-25 | F200 | W8 |
м400 | В-30 | F300 | W10 |
м450 | В-35 | F200-F300 | W8-W14 |
м550 | В-40 | F200-F300 | W10-W16 |
м600 | В-45 | F100-F300 | W12-W18 |
Методы определения морозостойкости бетона
В Государственном стандарте 10060-2012 указаны 4 способа лабораторных испытаний затвердевших бетонов на морозостойкость и один химический способ. Для каждого из них необходимо приготовить испытательные образцы в виде бетонных кубиков с длиной ребра 100 мм.
До начала испытаний образцы должны набрать проектную прочность согласно их марке. Для этого они выдерживаются в теплом помещении в течение 28 дней. При необходимости расширенного изучения возможно проведение промежуточных испытаний через 4, 7 и 14 дней после заливки бетона в формы.
Для проведения испытаний могут потребоваться:
Сам принцип лабораторных испытаний сводится к подтверждению заявленных результатов. Поэтому на практике реальная морозостойкость материалов всегда выше. Это объясняется в принудительном замачивании образцов и большой разнице в скорости охлаждения и нагрева.
Как происходят испытания, видео
Ускоренный химический и визуальный методы
Для проведения экспресс-испытаний подготовленные бетонные образцы опускают на сутки в серно-кислый натрий. Потом производят просушку при температуре 100˚C на протяжении 4-х часов. Эту процедуру повторяют 5 раз и после этого осматривают бетонные кубики. Если на поверхности отсутствуют трещины и дефекты, то морозостойкость материала не менее F300.
Достаточную устойчивость бетона к воздействию низких температур в частном строительстве можно определить визуально, осматривая готовый бетонный образец. На нем не должно быть видно крупнозернистой структуры, трещин и повреждений, мест расслаивания и цветных пятен. Для проверки уровня поглощения воды окуните образец в воду на сутки. Если количество воды за это время уменьшится более чем на 5% от объема образца, то это говорит о высокой пористости и слабой морозоустойчивости.
Способы повышения устойчивости к морозам
Морозостойкость бетона в значительной мере зависит от пористости материала и возможного проникновения влаги внутрь структуры. Поэтому показатели влагостойкости и морозоустойчивости очень сильно связаны между собой.
Кроме этого морозостойкость бетонных материалов повышают путем уменьшения фракции наполнителей и добавления специальных воздухововлекающих примесей. В результате поры приобретают замкнутое строение и не соединяются друг с другом. Это можно сравнить с пенополистиролом – пористым влагонепроницаемым материалом.