Каким бывает смесеобразование и в чем принципиальная разница

СМЕСЕОБРАЗОВАНИЕ

Смотреть что такое «СМЕСЕОБРАЗОВАНИЕ» в других словарях:

смесеобразование — смесеобразование … Орфографический словарь-справочник

СМЕСЕОБРАЗОВАНИЕ — (в двигателях внутреннего сгорания) образование горючей смеси. Внешнее смесеобразование (вне цилиндра) осуществляется карбюратором (в карбюраторных двигателях) или смесителем (в газовых двигателях), внутреннее смесеобразование форсункой… … Большой Энциклопедический словарь

смесеобразование — сущ., кол во синонимов: 2 • карбюрация (3) • образование (194) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

смесеобразование — я; ср. Процесс образования смесей. Ускоренное с. С. в двигателях внутреннего сгорания (перемешивание топлива с воздухом или др. окислителем для наиболее полного и быстрого сгорания топлива). * * * смесеобразование (в двигателях внутреннего… … Энциклопедический словарь

Смесеобразование — (в двигателях внутреннего сгорания), образование горючей смеси. Внешнее смесеобразование (вне цилиндра) осуществляется карбюратором (в карбюраторных двигателях) или смесителем (в газовых двигателях), внутреннее смесеобразование форсункой… … Автомобильный словарь

смесеобразование — mišinio paruošimas statusas T sritis Energetika apibrėžtis Degiojo mišinio paruošimas vidaus degimo varikliuose. Galimi du pagrindiniai mišinio paruošimo būdai: išorinis ir vidinis. Išorinis – toks mišinio paruošimas, kai degiojo mišinio… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

Смесеобразование — в двигателях внутреннего cгopaния, перемешивание топлива с воздухом (или другим окислителем) в двигателях для наиболее полного и быстрого сгорания топлива. В карбюраторных двигателях С. обеспечивается Карбюратором, в дизелях и бензиновых… … Большая советская энциклопедия

Смесеобразование — ср. Процесс образования смесей. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

смесеобразование — смесеобразование, смесеобразования, смесеобразования, смесеобразований, смесеобразованию, смесеобразованиям, смесеобразование, смесеобразования, смесеобразованием, смесеобразованиями, смесеобразовании, смесеобразованиях (Источник: «Полная… … Формы слов

смесеобразование — смесеобразов ание, я … Русский орфографический словарь

Источник

СУДОРЕМОНТ ОТ А ДО Я.

В своем блоге буду описывать основы технологии судоремонта, методы дефектоскопии, восстановления и упрочнения деталей, виды и методы ремонта судов и механизмов.Будет приведена технологическая документация на ремонт и изготовление деталей.

Оглавление

Смесеобразование в ДВС.

Смесеобразованием называется приготовление рабочей смеси топлива и воздуха для сжигания в цилиндрах двигателя. Процесс смесеобразования происходит почти мгновенно: от 0,03 до 0,06 с в тихоходных ДВС и от 0,003 до 0,006 с —в быстроходных. Для достижения полного сгорания топлива в цилиндрах необходимо обеспечить получение рабочей смеси требуемого состава и качества. При неудовлетворительном смесеобразовании (из-за плохого перемешивания топлива с воздухом) при недостатке кислорода в рабочей смеси происходит неполное сгорание, которое ведет к снижению экономичности работы ДВС. Экономичная работа двигателя достигается в первую очередь за счет обеспечения наиболее полного и быстрого сгорания топлива в цилиндрах вблизи в. м. т. Очень важное значение при этом имеет распыливание топлива на мельчайшие по возможности однородные частицы и равномерное распределение их по всему объему камеры сгорания.
В настоящее время в судовых ДВС применяют в основном однокамерный, предкамерный и вихрекамерный способы смесеобразования.
При однокамерном смесеобразовании топливо в мелкодисперсном состоянии под высоким давлением впрыскивается непосредственно в камеру сгорания, образованную днищами поршня, крышки и стенками цилиндра. При непосредственном впрыскивании топливным насосом создается давление 20— 50 МПа, а в отдельных типах двигателей 100—150 МПа. Качество смесеобразования зависит главным образом от согласования конфигурации камеры сгорания с формой и распределением факелов горения топлива. Для этого сопла форсунок имеют; 5— 10 отверстий диаметром 0,15—1 мм. Топливо во время впрыскивания, проходя через малые отверстия в сопле, приобретает скорость более 200 м/с, что обеспечивает его глубокое проникновение в воздух, сжатый в камере сгорания.
Камера сгорания типа Гессельмана:

Каким бывает смесеобразование и в чем принципиальная разница. Смотреть фото Каким бывает смесеобразование и в чем принципиальная разница. Смотреть картинку Каким бывает смесеобразование и в чем принципиальная разница. Картинка про Каким бывает смесеобразование и в чем принципиальная разница. Фото Каким бывает смесеобразование и в чем принципиальная разница

Качество перемешивания частиц топлива с воздухом зависит прежде всего от формы камеры сгорания. Очень хорошее смесеобразование достигается в камере, показанной на рисунке выше и впервые предложенной Гессельманом. Она широко используется в четырех- и двухтактных ДВС. Бортики 1 у краев поршня предотвращают попадание частиц топлива на стенки втулки 2 цилиндра, имеющей сравнительно низкую температуру.
ДВС большой мощности часто имеют поршни с вогнутым днищем. Камера сгорания, образованная крышкой цилиндра и поршнем такой конструкции, позволяет добиться хорошего смесеобразования.
При смесеобразовании с непосредственным впрыскиванием топлива в неразделенную камеру последняя может иметь простую форму с относительно малой поверхностью охлаждения. Поэтому ДВС с однокамерным способом смесеобразования просты по конструкции и наиболее экономичны.
Недостатки однокамерного способа смесеобразования следующие: необходимость повышенных коэффициентов избытка воздуха для обеспечения качественного сгорания топлива; чувствительность к изменению скоростного режима (из-за ухудшения качества распыливания при понижении частоты вращения коленчатого вала двигателя); очень высокое давление впрыскиваемого топлива, усложняющее и удорожающее топливную аппаратуру. Кроме того, из-за малых отверстий сопел форсунок необходимо применять тщательно очищенное топливо. По этой же причине очень трудно осуществить однокамерное смесеобразование в быстроходных ДВС малой мощности, так как при незначительном расходе топлива диаметры отверстий сопел форсунок должны быть значительно уменьшены. Изготовить многодырчатые форсунки с очень малым диаметром сопловых отверстий очень трудно, кроме того такие отверстия во время работы быстро засоряются и форсунка выходит из строя. Поэтому в быстроходных ДВС малой мощности более эффективно смесеобразование с раздельными камерами сгорания (предкамерное и вихрекамерное), осуществляемое с однодырчатой форсункой.

Каким бывает смесеобразование и в чем принципиальная разница. Смотреть фото Каким бывает смесеобразование и в чем принципиальная разница. Смотреть картинку Каким бывает смесеобразование и в чем принципиальная разница. Картинка про Каким бывает смесеобразование и в чем принципиальная разница. Фото Каким бывает смесеобразование и в чем принципиальная разница

На рисунке показан цилиндр ДВС с предкамерным смесеобразованием. Камера сгорания состоит из предкамеры 2, расположенной в крышке, и главной камеры 1 в надпоршневом пространстве, соединенных между собой. Объем предкамеры составляет 25—40 % общего объема камеры сгорания. При сжатии воздух, находящийся в цилиндре, с большой скоростью входит через соединительные каналы 4 в предкамеру, создавая в ней интенсивное вихреобразование. Топливо под давлением 8—12 МПа впрыскивается в предкамеру однодырчатой форсункой 3, хорошо перемешивается с воздухом, воспламеняется, но сгорает лишь частично из-за недостатка воздуха. Оставшаяся (несгоревшая) часть топлива вместе с продуктами сгорания под давлением 5—6 МПа выбрасывается в основную камеру сгорания. При этом топливо интенсивно распыливается, перемешивается с воздухом и сгорает. К преимуществам ДВС с предка-мерным смесеобразованием относится то, что они не требуют наличия топливной аппаратуры, работающей под очень высоким давлением и не нуждаются в топливе высокой степени очистки.
Основными недостатками этих ДВС являются: более сложная конструкция цилиндровых крышек, создающая опасность образования трещин из-за тепловых напряжений; трудность пуска холодного двигателя; повышенный расход топлива из-за несовершенного смесеобразования. Относительно большая поверхность стенок предкамеры вызывает сильное охлаждение воздуха при его сжатии во время пуска двигателя, что затрудняет получение температуры, необходимой для самовоспламенения топлива. Поэтому в двигателях с предкамерным способом смесеобразования допускают более высокое сжатие (степень сжатия достигает 17—18), а также применяют электрические запальные свечи и подогрев засасываемого воздуха в период пуска.

Источник

Процессы смесеобразования и сгорания в дизельных двигателях

« ОСНОВЫ ТЕОРИИ АВТОМОБИЛЬНОГО ДВИГАТЕЛЯ »

Тема занятия «Действительные циклы ДВС»

Контрольные вопросы по теме занятия:

Смесеобразование в дизелях

Классификация камер сгорания

Процесс сгорания топлива в дизелях (фазы сгорания)

Факторы, влияющие на процесс сгорания (перечислить)

СМЕСЕОБРАЗОВАНИЕ В ДИЗЕЛЯХ.

В дизелях смесеобразование происходит внутри цилиндров. Систе­ма смесеобразования обеспечивает:

развитие топливного факела;

прогрев, испарение и перегрев топливных паров,

смешивание паров с воздухом.

Смесеобразование начинается в момент начала впрыска топлива и заканчивается одновременно с окончанием сгорания. В этом слу­чае время на смесеобразование отводится в 5—10 раз меньше, чем и карбюраторном двигателе. И по всему объёму образуется неодно­родная смесь (есть участки очень обеднённого состава, а есть участ­ки сильно обогащённого состава). Поэтому горение протекает при больших суммарных значениях коэффициента избытка воздуха (1,4-2,2).

Развитие смесеобразования и получение оптимальных результа­тов в дизеле зависит от следующих факторов:

формы камеры сгорания;

размеров камеры сгорания;

температуры поверхностей камеры сгорания;

взаимных направлений движения топливных струй и воздуш­ного заряда.

КЛАССИФИКАЦИЯ КАМЕР СГОРАНИЯ

Наряду с обеспечением оптимального смесеобразования камеры сгорания должны способствовать получению высоких экономиче­ских показателей и хороших пусковых качеств двигателей.

В зависимости от конструкции и используемого способа смесе­образования камеры сгорания дизелей делятся на две группы: неразделённые и разделённые.

Неразделённые камеры сгорания представляют собой единый объем и имеют обычно простую форму, которая, как правило, со­гласуется с направлением, размерами и числом топливных факелов при впрыске. Эти камеры компактны, имеют относительно малую поверхность охлаждения, благодаря чему снижаются потери тепло­ты. Двигатели с такими камерами сгорания имеют приличные экономические показатели и хорошие пусковые качества.

Неразделённые камеры сгорания отличаются большим разнооб­разием форм. Чаще всего они выполняются в днище поршней, ино­гда частично в днище поршня и частично в головке блока цилинд­ров, реже — в головке.

Разделённые камеры сгорания состоят из двух отдель­ных объёмов, соединяющихся между собой одним или несколькими каналами. Поверхность охлаждения таких камер значительно боль­ше, чем у камер неразделённого типа. Поэтому в связи с большими тепловыми потерями двигатели с разделёнными камерами сгорания имеют обычно худшие экономические и пусковые качества и, как правило, более высокие степени сжатия.

Однако при разделённых камерах сгорания за счёт использова­ния кинетической энергии газов, перетекающих из одной полости в другую, удаётся обеспечить качественное приготовление топлив­но-воздушной смеси, благодаря чему достигается достаточно полное сгорание топлива и устраняется дымление на выпуске.

Кроме того, дросселирующее действие соединительных каналов разделённых камер позволяет значительно уменьшить «жёсткость» работы двигателя и снизить максимальные нагрузки на детали кри­вошипно-шатунного механизма. Некоторое снижение «жёсткости» работы двигателей с разделёнными камерами сгорания может также обеспечиваться путём повышения температуры отдельных частей камер сгорания

Каким бывает смесеобразование и в чем принципиальная разница. Смотреть фото Каким бывает смесеобразование и в чем принципиальная разница. Смотреть картинку Каким бывает смесеобразование и в чем принципиальная разница. Картинка про Каким бывает смесеобразование и в чем принципиальная разница. Фото Каким бывает смесеобразование и в чем принципиальная разница

Рисунок – Неразделённые камеры сгорания

а полусферическая ; б тороидальная в по­ршне ; в камера ЦНИДИ ;

г вихревая в поршне ; д шаровая в поршне ; е камера Гесельмана ; ж цилиндрическая.

Каким бывает смесеобразование и в чем принципиальная разница. Смотреть фото Каким бывает смесеобразование и в чем принципиальная разница. Смотреть картинку Каким бывает смесеобразование и в чем принципиальная разница. Картинка про Каким бывает смесеобразование и в чем принципиальная разница. Фото Каким бывает смесеобразование и в чем принципиальная разница

Рисунок – Камеры сгорания дизелей разделённого типа:

а — предкамера; б — вих­ревая камера в головке;

В зависимости от характера испарения, перемешивания с воздуш­ным зарядом и способа введения в зону горения основной массы впрыскиваемого топлива в дизелях различают объёмный, плёночный и объёмно-плёночный способы смесеобразования.

Объёмный способ смесеобразования. При объёмном способе смесеобразования топливо вводится в мелко распылённом капельножидком состоянии непосредственно в воз­душный заряд камеры сгорания, где затем оно испаряется и переме­шивается с воздухом, образуя топливно-воздушную смесь.

При объёмном смесеобразовании используют, как правило, неразделённые камеры сгорания (так называемый непосредственный впрыск). Качество смесеобразования в этом случае достигается в основном путём согласования формы камеры сгорания с формой и числом топливных факелов. При этом важное значение имеет рас­пыление топлива при впрыске. Коэффициент избытка воздуха для таких двигателей ограничивается значениями 1,5—1,6 и выше.

При объёмно-плёночном смесеобразовании топливно-воздушная смесь приготавливается одновременно и объёмным и плёночным способами. Этот способ приготовления смеси имеет место практически во всех дизелях и может рассматриваться как общий случай смесеобразования.

Плёночное смесеобразование устраняет два из основных недостатков дизелей: «жёсткость» работы и дымность при выпуске отработавших газов.

При плёночном смесеобразовании используется камера сгора­ния сферической формы, в которой осуществляется ин­тенсивное движение заряда: вращательное вокруг оси цилиндра и радиальное в поперечном направлении. Впрыск топлива осуществляется односопловой форсункой с давлением начала подъёма иглы 20 МПа. Впрыскиваемое топливо встречается с поверхностью стенки под острым углом и, почти не отражаясь от неё, растекается и «растягивается» попутными воздуш­ными потоками в тонкую плёнку. Имея большую поверхность контакта с нагретыми стенками камеры сго­рания, плёнка быстро прогревается и на­чинает интенсивно испаряться, и тем самым последовательно вводится в центр камеры сгорания, где к этому вре­мени образуется очаг горения.

Каким бывает смесеобразование и в чем принципиальная разница. Смотреть фото Каким бывает смесеобразование и в чем принципиальная разница. Смотреть картинку Каким бывает смесеобразование и в чем принципиальная разница. Картинка про Каким бывает смесеобразование и в чем принципиальная разница. Фото Каким бывает смесеобразование и в чем принципиальная разница

Каким бывает смесеобразование и в чем принципиальная разница. Смотреть фото Каким бывает смесеобразование и в чем принципиальная разница. Смотреть картинку Каким бывает смесеобразование и в чем принципиальная разница. Картинка про Каким бывает смесеобразование и в чем принципиальная разница. Фото Каким бывает смесеобразование и в чем принципиальная разница

Камера сгорания двигателя с плёночным сме­сеобразованием:

1 — фор­сунка; 2 — камера сгорания;

3 — топливная плёнка

Камера сгора­ния двигателя с объём­но-плёночным смесеоб­разованием:

1 — форсун­ка; 2 — камера сгорания

Основным недостатком плёночного смесеобразования являются низкие пуско­вые качества двигателя в холодном состоя­нии в связи с малым количеством топлива, участвующим в первоначальном сгорании.

Впрыск топлива в цилиндры двигателя обеспечивается топливоподающей аппаратурой, которая в конечном итоге образует капельки топлива соответствующих размеров. При этом не допускается образование слишком мелких или крупных капель, так как струя должна быть однородной. Качество распиливания топлива особенно важно для двигателей с неразделёнными камерами сгорания. Оно зависит от конструкции топливоподающей аппаратуры, частоты вращения коленчатого вала двигателя и количества топлива, подаваемого за один цикл (цикловой подачи). При повышении частоты вращения коленчатого вала и цикловой подачи возрастают давление впрыска и тонкость распыливания. В течение единичного впрыска топлива в цилиндр двигателя изменяются давление впрыска и условия перемешивания частиц топлива с воздухом, В начале и конце впрыска струя топлива дробится на сравнительно крупные капли, а в середине впрыска происходит самое мелкое распиливание. Отсюда можно заключить, что скорость истечения топлива через отверстия распылителя форсунки изменяется неравномерно за весь период впрыска. Заметное влияние на скорость истечения начальных и конечных порций топлива оказывает степень упругости пружины запорной иглы форсунки. При увеличении сжатия пружины размеры капель топлива в начале и в конце подачи уменьшаются. Это вызывает среднее увеличение давления, развиваемого в системе питания, что ухудшает работу двигателя при малой частоте вращения коленчатого вала и малой цикловой подаче. Уменьшение сжатия пружины форсунки оказывает отрицательное влияние на процессы сгорания и выражается в увеличении расхода топлива и повышении дымления. Оптимальное усилие сжатия пружины форсунки рекомендуется заводом-изготовителем и регулируется в процессе эксплуатации на стендах.

Процессы впрыска топлива в значительной степени определяются также техническим состоянием распылителя: диаметром его отверстий и герметичностью запорной иглы. Увеличение диаметра сопловых отверстий снижает давление впрыска и изменяет строение факела распыливания топлива (рис. 58). Факел содержит сердцевину 1, состоящую из крупных капель и целых струек топлива; среднюю зону 2, состоящую из большого количества крупных капель; внешнюю зону 3, состоящую из мелко распылённых капель.

Каким бывает смесеобразование и в чем принципиальная разница. Смотреть фото Каким бывает смесеобразование и в чем принципиальная разница. Смотреть картинку Каким бывает смесеобразование и в чем принципиальная разница. Картинка про Каким бывает смесеобразование и в чем принципиальная разница. Фото Каким бывает смесеобразование и в чем принципиальная разница

Рис.. Факел распыливания топлива:

l — длина факела, g — угол конуса факела.

Образование факела и его дальнобойность зависят от давления впрыска, диаметра соплового отверстия, плотности и подвижности воздуха. Чем больше давление впрыска и диаметр соплового отверстия, тем сильнее проникает факел в глубь камеры сгорания. Потоки воздуха в камере сгорания отклоняют факел впрыскиваемого топлива по направлению своего движения.

Условием нормального протекания рабочего цикла двигателя является умеренная скорость подачи топлива в начале впрыска, чтобы за период задержки воспламенения не накапливалось слишком много топлива в цилиндре. Тогда нарастание давления при воспламенении происходит плавно и двигатель работает мягко. Основная масса впрыскиваемого топлива должна подаваться с возрастающей скоростью, обеспечивающей лучшее проникновение капель топлива в удаленные точки камеры сгорания с целью полного использования находящегося там воздуха. Впрыск в заключительной стадии должен оканчиваться резко, так как при растянутом окончании топливо будет поступать с меньшей скоростью, и концентрироваться вблизи распылителя. В этом случае будет наблюдаться неполное сгорание и повышенное дымление.

Впрыск характеризуется количеством и скоростью истечения топлива за время цикловой подачи. Такая зависимость может быть изображена графически в виде характеристики впрыска, выбираемой заводом-изготовителем для каждого типа дизельного двигателя. Развитие процесса сгорания в дизельном двигателе зависит от характеристики впрыска топлива, длительности периода задержки его воспламенения и интенсивности движения воздуха в камере сгорания. Интервал времени между началом впрыска и воспламенением топлива составляет период задержки воспламенения. Он влияет на характер работы двигателя и зависит главным образом от свойств самого топлива, температуры в камере сгорания и угла опережения впрыска. При стандартном качестве топлива, если температура в камере сгорания возрастает, период задержки воспламенения уменьшается. Это снижает жесткость работы двигателя. Слишком большое опережение впрыска ведет к увеличению периода задержки воспламенения и жесткой работе двигателя, так как начало впрыска происходит в этом случае при сравнительно низких температурах в цилиндре.

СГОРАНИЕ СМЕСИ ДИЗЕЛЬНЫХ ТОПЛИВ

Для осуществления действительного цикла в дизелях в воздушный заряд, сжатый в цилиндре до 3 – 7 МПа и нагретый за счёт высокого давления до 500 – 800 0 С, под высоким давлением (до 150 МПа) через форсунку впрыскивается топливо. Сложные процессы смесеобразования и сгорания осуществляются за очень небольшой промежуток времени, соответствующий 20 – 25 0 поворота коленчатого вала (в 10 – 15 раз меньше чем в карбюраторных двигателях).

Рассмотрим индикаторную диаграмму дизельного двигателя (рис. 1).

Каким бывает смесеобразование и в чем принципиальная разница. Смотреть фото Каким бывает смесеобразование и в чем принципиальная разница. Смотреть картинку Каким бывает смесеобразование и в чем принципиальная разница. Картинка про Каким бывает смесеобразование и в чем принципиальная разница. Фото Каким бывает смесеобразование и в чем принципиальная разница

Рисунок – Развёрнутая индикаторная диаграмма дизельного двигателя

точка 1 – впрыск топлива; точка 2 – начало горения;

Если учесть характер и интенсивность тепловыделения, изменение температуры и давления в цилиндре в разные моменты времени, то весь процесс горения можно условно разделить на четыре фазы:

Первая фаза горения (θ 1 ) — задержка воспламенения, начинается с момента поступления топлива (точка 1 ) и заканчивается в момент отрыва кривой сгорания от линии сжатия (точка 2 ). Впрыск топлива происходит до прихода поршня в ВМТ.

Угол опережения впрыска топлива находится в пределах 20—35° поворота коленчатого вала.

Во время впрыска струя топлива, выходящая из форсунки под большим давлением, разбивается о плотные слои воздуха на мельчайшие капли, образуя факел распыления.

Концентрация топлива в таком факеле изменяется по поперечному сечению и длине. В ядре факела находятся наиболее крупные, а на периферии — наиболее мелкие капли, находящиеся друг от друга на значительных расстояниях. Следовательно, структура рабочей смеси в дизелях крайне неоднородна, поэтому здесь коэффициент избытка воздуха обычного смысла лишён, так как он не даёт представления о действительном составе смеси.

Локальные значения коэффициента избытка воздуха по различным зонам камеры сгорания могут меняться от 0 (жидкие капли) до ∞ (воздух). Именно наличие всей гаммы составов смеси и температур определяет возможность воспламенения в среднем очень бедной смеси, например, при α = 6 и более.

Таким образом, период задержки воспламенения включает в себя время, необходимое для распада струй на капли, некоторого продвижения капель по объёму камеры сгорания, прогрева, частичного испарения и смешения топливных паров с воздухом, а также время саморазгона химических реакций.

Если период задержки воспламенения больше продолжительности впрыска, то все топливо оказывается поданым в цилиндр до начала воспламенения. При этом большая часть его успевает испариться и смешаться с воздухом. В результате объёмного воспламенения этой части топлива в цилиндре развивается резкое повышение давления с высокими динамическими нагрузками на детали и повышенным уровнем шума. Поэтому длительный период задержки воспламенения нежелателен.

Продолжительность первой фазы сгорания составляет 1—3 мс, что соответствует 12—25° поворота коленчатого вала.

На продолжительность первой фазы сгорания влияют следующие факторы:

1. Воспламеняемость топлива, которая оценивается цетановым числом. Чем выше цетановое число, тем лучше воспламеняемость.

2. Давление и температура воздушного заряда в начале впрыска топлива. При увеличении давления и температуры период задержки воспламенения сокращается.

5. Тип распылителя форсунки. Форсунка закрытого типа сокращает период задержки воспламенения.

6. Нагрузка на двигатель. С ростом нагрузки увеличивается давление и температура цикла, что приводит к повышению теплового режима двигателя, а это в свою очередь вызывает сокращение времени задержки воспламенения.

7. Частота вращения коленчатого вала. Увеличение частоты вра­щения коленчатого вала приводит к улучшению распыления, увеличению давления и температуры конца сжатия, что способствует сокращению первой фазы горения, особенно в дизелях с разделенными камерами сгорания. Продолжительность первой фазы горения при этом растет.

Вторая фаза горения (θ 2 ) — самовоспламенение и быстрое горение начинается с момента воспламенения (точка 2 ) и заканчивается в момент достижения максимального давления в цилиндре (точка 3 ).

В первую очередь сгорают однородные слои смеси топлива и воздуха хорошо перемешанные между собой. При этом пламя распространяется очень быстро, соответственно быстро растёт Давление, в определённых случаях с образованием ударной волны, распространяющейся со скоростью звука. Но в отличие от карбюраторных двигателей в дизелях эти волны не переходят в детонационные, так как структура смеси по всему объёму камеры сгорания неравномерна. Это позволяет получать более высокую степень сжатия.

После того, как сгорит хорошо подготовленная к воспламенению топливовоздушная смесь, горение продолжается в зонах, где структура смеси более неравномерна. Здесь на индикаторной диаграмме наблюдается некоторый спад роста давления.

В течение второй фазы выделяется 30—45 % всей теплоты. Температура рабочего тела возрастает до 1600—1800 К. Максимальное давление может достичь 6—9 МПа, а при наддуве превысить 10 МПа. Продолжительность второй фазы 0,8—1,5 мс, что соответствует 10—20° поворота коленчатого вала.

На развитие и продолжительность второй фазы влияют следующие факторы:

1. Количество топлива, прошедшего предпламенную подготовку за период задержки воспламенения и сгорающее с большой скоростью. Чем больше подача топлива и мельче распыление, тем интенсивнее тепловыделение и рост давления.

2. Тип камеры сгорания. Влияние конструкции камеры на первую фазу горения приводит к определённому развитию и второй фазы, так как определяет количество топливовоздушной смеси, подготовленной к воспламенению в течение первой фазы.

3. Нагрузка на двигатель. С уменьшением нагрузки продолжительность второй фазы горения сокращается, так как уменьшается величина впрыскиваемой порции топлива и время его подачи.

4. Частота вращения коленчатого вала. При росте частоты вращения коленчатого вала улучшается качество распыления, сокращается продолжительность впрыска, растёт давление и температура заряда. Все это приводит к сокращению второй фазы горения.

Третья фаза горения (θ 3 ) — характеризуется плавным изменением давления. Началом этой фазы считается конец второй фазы (точка 3 ), а окончанием — момент, соответствующий достижению максимальной средней температуры газов в цилиндре (точка 4 ).

К началу третьей фазы все несгоревшее топливо, поданное в цилиндр во время первых двух фаз, находится в виде капель или сгустков паров, которые отделены от зон со свободным кислородом фронтом пламени или продуктами горения. В результате происходит термическое разложение капель топлива (крекинг) с образованием частиц углерода в виде сажи, которая, покидая цилиндр вместе с отработавшими газами, вызывает сильное дымление на выпуске. Горение продолжается при увеличивающемся объеме камеры, поэтому давление плавно понижается.

За время третьей фазы выделяется 25—30 % теплоты, поэтому температура продолжает повышаться, достигая в конце фазы 1800—2200 К. Продолжительность третьей фазы — 1—2 мс, что соответствует 15—25° поворота коленчатого вала.

На развитие третьей фазы оказывают влияние следующие факторы:

1. Качество распыления и количество топлива, впрыскиваемого после начала сгорания. Чем меньше подано топлива до начала третьей фазы горения, тем меньше будет выделено теплоты в этой фазе, что характерно для работы дизеля на малых нагрузках.

2. Скорость движения воздушного заряда. Рост скорости движения заряда увеличивает тепловыделение, но это происходит до определённого момента. При чрезмерном завихрении заряда тепловыделение в третьей фазе снижается, так как в этом случае продукты сгорания из зоны одного факела попадают в зону другого, увеличивая неполноту сгорания.

3. Частота вращения коленчатого вала. С ростом частоты вращения коленчатого вала скорость движения заряда увеличивается, а распыление улучшается. Продолжительность третьей фазы сокращается.

Четвертая фаза горения (θ 4 ) — догорание начинается в момент достижения максимальной температуры и продолжается в течение всего времени догорания топлива. В течение этой фазы догорает топливо, не успевшее сгореть в третьей фазе, причем происходит это в условиях недостатка кислорода, так как значительное его количество уже израсходовано. Поэтому догорание протекает медленно.

За время четвертой фазы при полной нагрузке дизеля выделяется 15—25 % теплоты. Таким образом, общее количество тепловыделения к концу четвертой фазы оставляет 90—95 %. Остальные 5—10 % теряются вследствие неполноты сгорания топлива. Продолжительность четвертой фазы 3,5—5 мс, что соответствует 50—60° поворота коленчатого вала.

На развитие четвертой фазы горения оказывают влияние следующие факторы:

1. Турбулентное движение заряда, которое улучшает контакт топлива и воздуха и, следовательно, улучшает догорание.

2. Качество распыления в конце подачи топлива . Чем больше диа­метр капель, тем продолжительнее процесс догорания. Нечёткость отсечки топлива в конце впрыска, как и продолжительное снижение давления в конце впрыска не только снижают тепловыделение, но и вызывают закоксовывание сопел форсунок.

3. Попадание топлива на холодные стенки внутрицилиндрового пространства приводит к увеличению времени догорания, поэтому увеличение нагрузки дизеля до его прогрева нежелательно.

4. Наддув. Используя наддув, увеличивают количество подаваемого топлива, в том числе и путём затяжного впрыска, что приводит к увеличению времени догорания.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *