Какова современная формулировка периодического закона в чем причина периодической зависимости
Периодический закон
Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.
Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением периодического закона.
Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).
Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.
Радиус атома
Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая говорит о наиболее вероятном месте нахождения электрона.
В периоде радиус атома уменьшается с увеличением порядкового номера элементов («→» слева направо). Это связано с тем, что с увеличением номера группы увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.
С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.
Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде «←» справа налево.
Период, группа и электронная конфигурация
Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы, то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.
Длина связи
Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.
Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.
Металлические и неметаллические свойства
Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.
Основные и кислотные свойства
Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).
Восстановительные и окислительные свойства
Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону
Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе выше теллура, значит и ее электроотрицательность тоже выше.
Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.
Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.
Высшие оксиды и летучие водородные соединения (ЛВС)
В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды, ниже строка с летучими водородными соединениями.
Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру, для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.
На экзамене строка с готовыми «высшими» оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим, что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.
С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене. Я расскажу вам, как легко их запомнить.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Периодический закон
Периодический закон — это фундаментальный закон, который был сформулирован Д.И. Менделеевым в 1869 году.
Поэтому современная формулировка периодического закона звучит так:
« Свойства элементов, форма и свойства образованных ими соединений находятся в периодической зависимости от величины заряда ядер их атомов «.
Следствие периодического закона – изменение свойств элементов в определенных совокупностях, а также повторение свойств по периодам, т.е. через определенное число элементов. Такие совокупности Менделеев назвал периодами.
Группы – вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns— и np— подуровнях.
Периодическая система химических элементов Д.И. Менделеева
Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра.
Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородными газами (Ne, Ar, Kr, Xe, Rn), которым предшествуют типичные неметаллы.
В периодах слева направо возрастает число электронов на внешнем уровне.
В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства.
2Na + H2 → 2NaH
В четвертом периоде вслед за Са расположены 10 переходных элементов (от скандия Sc до цинка Zn), за которыми находятся остальные 6 основных элементов периода ( от галлия Ga до криптона Кr). Аналогично построен пятый период. Переходными элементами обычно называют любые элементы с валентными d– или f–электронами.
Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d–элементов (от лантана La — до ртути Hg), а после первого переходного элемента лантана La следуют 14 f–элементов — лантаноидов (Се — Lu). После ртути Hg располагаются остальные 6 основных р-элементов шестого периода (Тl — Rn).
В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th — Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.
Элементы в Периодической системе разделены на восемь групп (I – VIII), которые в свою очередь делятся на подгруппы — главные , или подгруппы А и побочные , или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).
Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно:
В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические.
В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы.
У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп (литий, бериллий, натрий и др.). У p-элементов электронами заполняются p-орбитали. К ним относятся элементы III-VIII групп, главных подгрупп. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.
Номер периода соответствует числу заполняемых энергетических уровней.
Номер группы, как правило, соответствует числу валентных электронов в атоме (т.е. электроном, способных к образованию химической связи).
Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения!
О каких же еще свойствах говорится в Периодическом законе?
Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др.
Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств.
Орбитальный радиус – это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов.
Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами.
Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы.
Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы.
Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру.
Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно:
Чем больше заряд ядра атома (при одинаковом количестве заполняемых энергетических уровней), тем меньше атомный радиус.
В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома.
В главных подгруппах сверху вниз увеличивается орбитальный радиус.
В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов.
В периодах слева направо орбитальный радиус атомов уменьшается.
1) O 2) Se 3) F 4) S 5) Na
В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S.
В группе снизу вверх атомный радиус уменьшается, а сверху вниз – увеличивается. Следовательно, правильный ответ: O, S, Se или 142.
Ответ: 142
Пример. Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке уменьшения радиуса атома 1) K 2) Li 3) F 4) B 5) Na |
Решение: В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na. В периоде слева направо атомный радиус уменьшается, а справа налево – увеличивается. Следовательно, правильный ответ: Li, B, F или 243. Ответ: 243 |
Рассмотрим закономерности изменения радиусов ионов : катионов и анионов.
Катионы – это положительно заряженные ионы. Катионы образуются, если атом отдает электроны.
Радиус катиона меньше радиуса соответствующего атома. С увеличением положительного заряда иона радиус уменьшается.
Анионы – это отрицательно заряженные ионы. Анионы образуются, если атом принимает электроны.
Радиус аниона больше радиуса соответствующего атома.
Радиусы ионов также зависят от числа заполненных энергетических уровней в ионе и от заряда ядра.
Изоэлектронные ионы – это ионы с одинаковым числом электронов. Для изоэлектронных частиц радиус также определяется зарядом ядра: чем больше заряд ядра иона, тем меньше радиус.
Еще одно очень важное свойство атомов – электроотрицательность (ЭО).
Электроотрицательность – это способность атома смещать к себе электроны других атомов при образовании связи. Оценить электроотрицательность можно только примерно. В настоящее время существует несколько систем оценки относительной электроотрицательности атомов. Одна из наиболее распространенных – шкала Полинга.
По Полингу наиболее электроотрицательный атом – фтор (значение ЭО≈4). Наименее элекроотрицательный атом –франций (ЭО = 0,7).
В главных подгруппах сверху вниз уменьшается электроотрицательность.
В периодах слева направо электроотрицательность увеличивается.
Пример. Из указанных в ряду химических элементов выберите три элемента-неметалла. Расположите выбранные элементы в порядке возрастания их электроотрицательности. Запишите в поле ответа номера выбранных элементов в нужной последовательности: 1) Mg 2) P 3) O 4) N 5) Ti |
Решение: Элементы-неметаллы – это фосфор Р, кислород О и азот N. Электроотрицательность увеличивается в группах снизу вверх и слева направо в периодах. Следовательно, правильный ответ: P, N, O или 243. Периодический закон Д.И. Менделеева и периодичность свойств атомов. КонспектОглавление1. Современная формулировка периодического закона и структура периодической системы Д.И.МенделееваВ 1869 г. Д.И. Менделееву удалось сформулировать периодический закон – важнейший закон природы: свойства химических элементов, а, следовательно, и свойства образуемых ими простых и сложных веществ состоят в периодической зависимости от их атомного веса. Согласно этой формулировке наблюдалось несоответствие положения некоторых элементов в периодической системе Менделеева: В начале 20 века закон Менделеева и его система были обоснованы на квантово-механическом уровне. Существо этого закона было полностью сохранено, а в качестве фундаментальной константы атома стал использоваться заряд ядра атома (соответствующий порядковому номеру элемента), что позволило устранить наблюдавшиеся несоответствия. Исходя из структуры электронной оболочки атомов число элементов в III периоде – должно было бы быть 18; в IV периоде – должно было бы быть 32; в V периоде – должно было бы быть 50. Это обусловлено тем, что заполнение d-состояний электронами запаздывает на один период, а заполнение f-состояний – на два периода. Отличие реальной системы от теоретически возможной заключается в том, что в первой не учитывалось электрон-электронное взаимодействие. Теоретический учет этого взаимодействия – чрезвычайно сложная задача. На качественном уровне приходится учитывать три эффекта – эффект экранирования электронами ядра атома, эффект проникновения электронов к ядру, взаимное отталкивание электронов, принадлежащих одному и тому же энергетическому слою Эффект экранирования ядра связан с тем, что внутренние электроны атома частично заслоняют ядро, в результате чего уменьшается его воздействие на внешний электрон. Эффект экранирования учитывается некоторой постоянной Sэкр, называемой константой экранирования. Заряд ядра с учетом экранирования называется эффективным зарядом и определяется соотношением Zэфф. = Z – Sэкр. Экранирование внешнего электрона возрастает с увеличением общего числа электронов в атоме. Эффект проникновения электронов к ядру обусловлен тем, что электрон, согласно положениям квантовой механики, может находиться в любой точке атома. Это означает, что внешний электрон часть времени находится вблизи ядра, проникая через слои внутренних электронов, и не испытывает при этом их экранирующего действия. Распределение электронной плотности относительно ядра изображают кривой распределения вероятности нахождения электрона в шаровом слое радиуса r толщиной dr, объем которого dV = 4pr 2 dr. Для одного и того же энергетического слоя наибольшую проникающую способность проявляют s-электроны, меньшую – p-электроны, еще меньшую – d-электроны (рис.1). Число максимумов на кривой определяется числом n. Для 3s-электрона Nmax = n, для р-электрона Nmax = (n – 1), для d-электрона Nmax = (n – 2). Эффект проникновения увеличивает прочность связи электрона с ядром. Взаимное отталкивание электронов, принадлежащих одному и тому же энергетическому слою, оказывает большое влияние на прочность связи электрона с ядром. Это отталкивание особенно сильно проявляется между двумя электронами с противоположными спинами, находящимися на одной орбитали. Эти эффекты приводят к изменению эффективного заряда ядра атома, что позволяет объяснить реальную структуру электронной оболочки атома. В настоящее время система Д.И. Менделеева представляет собой предельно краткую и четкую физико-химическую энциклопедию. В современной формулировке периодический закон Д.И.Менделеева звучит следующим образом: свойства элементов, а также свойства и формы образуемых ими соединений находятся в периодической зависимости от заряда ядра атомов элементов. На основе периодического закона разработаны графические системы Д.И. Менделеева. В настоящее время их насчитывается более 3 тысяч. Наиболее распространены два варианта таблицы – короткопериодный и длиннопериодный. Периоды – горизонтальные ряды, объединяющие элементы с одинаковым значением главного квантового числа n. Номер периода соответствует числу заполненных электронами энергетических уровней атома каждого конкретного элемента. Группы – вертикальные ряды, объединяющие элементы с одинаковым числом валентных электронов. Современная периодическая таблица состоит из 7 периодов: первый содержит всего два элемента, второй и третий – по 8 элементов (малые периоды), четвертый и пятый – по 18 элементов, шестой – 32 элемента, седьмой период не завершен, но должен содержать также 32 элемента (большие периоды). Каждый период начинается с двух s-элементов, в атомах которых впервые появляется электрон со значением n, соответствующим номеру заполняемого периода, и заканчивается шестью p-элементами. В больших периодах между s- и р-элементами размещается по десять d- элементов. Все f-элементы условно помещаются в ячейки лантана (лантаноиды) и актиния (актиноиды), а их символы обычно выносятся за пределы периодической таблицы в виде рядов. 2. Радиус атома и энергия ионизацииПериодичностью называется повторяемость химических и физических свойств атомов химических элементов, их простых веществ и сложных соединений при изменении порядкового номера элемента в периодической таблице Д.И.Менделеева. Основная причина периодичности свойств элементов связана с электронным строением их атомов. Рассмотрим 2 вида периодичности (горизонтальную и вертикальную) на примере таких свойств атомов как орбитальный радиус и его энергия ионизации. Горизонтальная периодичность проявляется в появлении максимальных и минимальных значений для различных свойств элементов и их соединений в пределах каждого периода. Связана горизонтальная периодичность с изменением числа электронов на внешних энергетических уровнях атома с ростом заряда атомного ядра при движении от начала периода к его концу. Вертикальная периодичность – вид периодичности, по которому элементы объединяют в группы: элементы одной группы имеют одинаковые конфигурации валентных электронов. Вертикальная периодичность заключается в повторяемости свойств атомов и их соединений и закономерном их изменении при увеличении заряда ядра в пределах каждой группы элементов. Размеры атомов обычно оценивают по величине их радиуса. Однако вследствие волнового характера движения электрона радиус атома невозможно точно определить. Поэтому за радиус принимают различные условно выбранные величины. Различают орбитальный, атомный (ковалентный, металлический), ван-дер-ваальсов, ионный радиусы. За орбитальный радиус (rорб) свободного атома принимают расстояние от центра атома до максимума, соответствующего внешнему электронному облаку, на теоретически рассчитанной кривой распределения вероятности нахождения электрона в атоме от расстояния r (см. рис. 1, табл. 1). Рис.1. График зависимости величины 4πr 2 R 2 (r) от расстояния r для 1s-орбитали На практике химиков больше интересуют радиусы атомов, связанных между собой. При рассмотрении простых веществ и органических соединений обычно пользуются понятием об атомном радиусе. Атомные радиусы (табл. 1) подразделяют на радиусы атомов металлов (металлический радиус), радиусы атомов неметаллов (ковалентные радиусы) и радиусы атомов благородных газов. Под металлическим радиусом (rме) понимают половину расстояния между ближайшими соседними атомами металла в кристаллической решетке. Радиусы атомов благородных газов (rблаг.г) рассчитаны из межатомных расстояний в кристаллах этих веществ, которые существуют при низких температурах. Рис. 2. Ковалентные и ван-дер-ваальсовы радиусы молекулы Cl2 в кристалле Часто для оценки размеров групп атомов или выяснения того, как могут взаимодействовать отдельные части молекулы, бывает интересно знать размер атома в том направлении, в котором он не образует химической связи. Половина расстояния между несвязанными атомами называется ван-дер-ваальсовым радиусом (rВ). Другими словами, ковалентный радиус – это радиус атома в направлении химической связи, а ван-дер-ваальсов радиус – радиус атома в любом другом направлении. Из рис. 2 видно, что ван-дер-ваальсов радиус находят по расстоянию между двумя ядрами хлора в соседних молекулах, и величина его всегда больше, чем ковалентный радиус атома (табл. 1). В неорганической химии чаще всего оперируют понятием ионного радиуса. Ионный радиус (rион) характеризует размер иона. Ионные радиусы оценивают различными способами из экспериментальных данных. Для положительно заряженного иона (катиона) ионный радиус всегда меньше, чем ковалентный, для отрицательно заряженного иона (аниона) – больше, чем ковалентный радиус (табл. 1). Ионные радиусы одного и того же элемента изменяются в зависимости от координационного числа (к.ч.) иона и степени его окисления. Таблица 1. Значения радиусов (в пм) для атомов и ионов I – III периодов (1пм = 10 -9 см =10 3 нм). Способность атомов отдавать электроны характеризует величина, называемая энергией ионизации. Энергия ионизации Eи (energy of ionization) – это количество энергии, необходимое для отрыва электрона от невозбужденного атома в газообразном состоянии. ЭлементДля d-элементов радиус увеличивается при переходе от IV к V периоду и уменьшается при переходе от V к VI периоду. Аналогичные тенденции наблюдаются и в изменении ван-дер-ваальсовых, атомных и ионных (при одинаковом заряде) радиусов. Уменьшение радиусов d-элементов при переходе от V к VI периоду обусловлено тем, что увеличение числа электронных слоев в них компенсируется f-сжатием, связанным с заполнением электронами 4f-подслоя у f-элементов VI периода. Отмеченным закономерностям не подчиняются d-элементы 3-й и 11-й групп. Для них типичны закономерности, наблюдаемые для s- и р-элементов. Для d-элементов значения Eи1 в группе в общем увеличиваются. Это можно объяснить эффектом проникновения электронов к ядру. 3. Сродство атома к электронуСродство атомов к электрону определено для многих элементов. Положительное значение Есрод1 означает поглощение энергии при присоединении электрона (эндотермический процесс) – невыгодно, отрицательное значение Есрод1 – экзотермический процесс – выделение энергии при присоединении электрона (выгодно). 4. ЭлектроотрицательностьЭлектроотрицательность (ЭО) характеризует способность атома притягивать к себе электроны при образовании химической связи. Электроотрицательность не является физическим свойством, которое можно измерить. Величину электроотрицательности вычисляют, используя различные свойства веществ (энергию ионизации, сродство атома к электрону, межъядерные расстояния, энергии связи электрона с ядром и др.). Шкала электроотрицательности по Малликену. Р.Малликеном (США) был предложен способ вычисления ЭО как среднего арифметического первой энергии ионизации атома Eи и его сродства к электрону Eсрод.:
Из уравнения следует, что атомы с большими значениями Eи и Eсрод. сильнее притягивают к себе электроны, обобществляемые при образовании связи. Так, атомы металлов имеют низкие значения электроотрицательности, так как для них характерны небольшие значения энергии ионизации и сродства к электрону. Атомы неметаллов, наоборот, характеризуются высокой электроотрицательностью вследствие того, что имеют существенно большие значения Eи и Eсрод.. Недостаток этого подхода связан с тем, что сродство к электрону установлено не для всех элементов, поэтому электроотрицательность по Малликену определена также не для всех элементов. Шкала электроотрицательности по Полингу. Допустим, что связь в молекуле АВ – ковалентная, тогда энергию связи ЕАВ в молекуле АВ можно представить как среднее между энергиями связи в молекулах А2 и В2, обозначенных соответственно ЕА-А и ЕВ-В. Однако найденная из опыта энергия связи ЕАВ обычно оказывается больше, то есть: Причина этого заключается в некоторой поляризации связи А-В, т.е. по значению величины Δ можно судить о степени полярности ковалентной связи и, следовательно, о способности атомов притягивать к себе электроны. Л. Полинг предположил, что величина Δ зависит от разности электроотрицательностей
В группах р-элементов устойчивость высшей степени окисления уменьшается, но уменьшается немонотонно. Это связано с тем, что энергетическое различие между валентными s- и р-орбиталями в группах также изменяется немонотонно, то есть наблюдается четко выраженная вторичная периодичность. ΔЕsp для элементов 3-го и 5-го периодов ниже, чем для элементов 4-го периода (Ge, As, Se, Br). Поэтому устойчивость соединений в высшей степени окисления у элементов 3-го и 5-го периодов обычно выше, чем для аналогичных соединений 4р-элементов. Например, устойчивость галогенидов элементов 4-го периода мышьяка (AsСl5) и cелена (SeF6) в их высшей степени окисления меньше, чем устойчивость подобных галогенидов элементов 3-го (PCl5, SF6) и 5-го (SbCl5, TeF6) периодов. Для атомов р-элементов 6-го периода, имеющих большие различия между валентными s- и р-орбиталями, высшая степень окисления неустойчива.
|