Карбюратор за что отвечает игла
Мотоциклетные карбюраторы теория настройка и понимание работы
Мотоциклетные карбюраторы теория настройка и понимание работы
Мотоциклетный карбюратор теория 101 (Частичный перевод и дополнение данной статьи):
https://docs.google.com/file/d/0B-KrKk_YXL4TNjlob09WcnljeUk/edit
Довольно редко возникает необходимость приобретать «jet kit» для правильной настройки смеси карбюраторов
Примечание автора (приведен очень краткая выжимка перевод, сильно дополненная и адаптированная под русский язык)
Все карбюраторы работают по базовому принципу атмосферного давления
Изменяя атмосферное давление внутри двигателя и карбюратора, мы можем изменять давление и производить подачу топлива и воздуха
По мере подъема поршня на 2х тактном двигателе, внутри картера двигателя создается низкое давление
Когда поршень на 4х тактном двигателе идет вниз, низкое давление создается над поршнем
Это низкое давление также вызывает низкое давление внутри карбюратора
За пределами двигателя и карбюратора давление выше
Значит воздух будет поступать внутрь карбюратора и двигателя до тех пор, пока давление не выровняется
Движущийся воздух, проходящий через карбюратор, будет собирать топливо и смешиваться с воздухом
Внутри карбюратора находится труба (venturi), рис. 1
Прим. автора: далее ведется аналогия реки и потока в карбюраторе
Река (поток?*), которая внезапно сужается, может быть использована для иллюстрации того, что происходит внутри карбюратора
Вода в реке ускоряется по мере приближения к суженным берегам и будет ускоряться, если река сужается еще больше
То же самое происходит внутри карбюратора
Ускоряющийся воздух вызывает падение атмосферного давления внутри карбюратора
Чем быстрее движется воздух, тем ниже давление внутри карбюратора
Большинство карбюраторов мотоциклов регулируются положением дроссельной заслонки, а не частотой вращения двигателя
Прим. автора: далее ведется отход от перевода и изложение материала немного измененно
Схема управления холостым ходом имеет две регулируемые части, рис. 2.
Пилотный воздушный винт и пилотный жиклер
Воздушный винт может быть расположен рядом с задней стороной, либо рядом с передней частью карбюратора
Если винт расположен сзади, он регулирует количество воздуха, поступающего в контур
Если винт вкручивается, это уменьшает количество воздуха и обогащает смесь
Если винт выкручивается, он больше откроет проход и даст больше воздуха, который приводит к обедненной смеси
Если винт расположен рядом с передней частью карбюратора, то регулирует расход топлива
Смесь будет более бедной, если он закручен, и богаче, если он выкручен
Если воздушный винт должен быть повернут более чем на 2 оборота
Для лучшего холостого хода, потребуется следующий пилотный жиклер меньшего размера
В нем есть небольшое отверстие, которое ограничивает поток топлива
Пилотный воздушный винт, и пилотный жиклер влияют на карбюратор от холостого хода до примерно открытия 1/4 дросселя
Золотник влияет на смесеобразование между 1/8 и 1/2 газа (открытия дросселя)
Золотник сильно влияет между 1/8 и 1/4 и имеет меньшее влияние до 1/2 газа (открытия дросселя)
Слайды бывают разных размеров, и размер определяется тем, как далеко находится их задняя сторона, рис. 3
Лучше для понимания и что такое «слайд» посмотреть на данной картинке:
https://www.siue.edu/
Чем больше вырез, тем беднее смесь (т.к. через нее пропускается больше воздуха) чем меньше вырез, тем богаче будет смесь
На дроссельных клапанах есть цифры, которые объясняют, сколько стоит визитка
Игла и золотник влияют на карбюрацию от 1/4 до 3/4 дросселя
Струйная игла представляет собой длинный конический стержень
Контролирует, сколько топлива можно втянуть в трубу карбюратора
Чем тоньше конус, тем богаче смесь
Чем толще конус, тем беднее смесь, т.к. более толстый конус меньше пропускает топлива в трубу карбюратора
Конусы спроектированы очень точно, чтобы давать разные смеси на разных отверстиях дросселя
Некоторые иглы имеют пазы (канавки), вырезанные в верхней части для регулирования положения иглы
Зажим входит в одну из этих канавок и удерживает ее от падения или смещения
Положение зажима может быть изменено, чтобы двигатель работал богаче или экономнее, рис. 4.
Если двигатель должен работать более экономно, зажим будет перемещен выше
Это приведет к понижению положения иглы в золотник и уменьшению расхода топлива
Если зажим опущен, игла форсунки поднимется, и смесь станет богаче
Внутренний диаметр иглы толще-тоньше логично повлияет на расхода топлива
Игла и золотник взаимосвязаны, контролируют расход топлива в диапазоне от 1/8 до 3/4
Большая часть настройки для этого диапазона делается иглой, а не золотником
Главный жиклер управляет потоком топлива от 3/4 до полного газа, рис. 5.
Когда дроссельная заслонка открыта на 3/4 и выше
Игла вытягивается достаточно высоко, и размер отверстия главного жиклера начинает регулировать поток топлива
У главных жиклеров отверстия разного размера, и чем больше отверстие, тем больше топлива будет течь (и наоборот)
Главные жиклеры имеют маркировки, например 180, 185, 190, 195, 200
Чем выше число на главного жиклера, тем больше топлива может пройти через него и тем богаче будет смесь
Обогатительная система (использование подсоса) используется для запуска холодных двигателей
В холодном двигателе топливо прилипает к стенкам цилиндра из-за конденсации
Соответственно смесь будет слишком бедна для запуска двигателя
Обогатительная система будет добавляет топливо, чтобы компенсировать топливо, прилипшее к стенкам цилиндра
После прогрева двигателя конденсация не является проблемой, и обогащение не требуется
Воздушно-топливная смесь должна быть изменена в соответствии с требованиями двигателя
Идеальное соотношение воздух к топливу составляет 14,7 г воздуха на 1 г топлива
Это идеальное соотношение достигается только в течение очень короткого периода при работающем двигателе
Из-за неполного испарения топлива на низких скоростях или дополнительного топлива, необходимого на высоких скоростях:
Фактическое эксплуатационное соотношение воздух к топливу обычно богаче
На рисунке 6 показано фактическое соотношение воздух к топливу для любого заданного отверстия дроссельной заслонки
Устранение неполадок карбюратора
Устранение неполадок карбюратора становится простым, если известны основные принципы
Следует помнить, что работа карбюратора определяется положением дроссельной заслонки, а не частотой вращения двигателя
Если двигатель имеет проблемы при низких оборотах на холостом ходу до 1/4 дросселя
Вероятной проблемой является пилотная система холостого хода или золотниковый клапан
Если в двигателе возникают проблемы между 1/4 и 3/4 дросселем
Скорее всего, проблема в игле и золотнике (скорее всего в игле)
Если двигатель работает плохо на 3/4 до полного дросселя
Вероятной проблемой является главный жиклер
Оставшиеся полторы страницы не стану переводить, для начального понимания не нужно, больше забьет голову
По мнению автора обязательно ознакомиться, очень наглядно показана работа карбюратор:
Принцип действия карбюратора
Содержание
Поплавковый механизм [ ]
Для обеспечения бесперебойной работы карбюратору необходима постоянная подача топлива, поддерживаемого на постоянном уровне в резервуаре. Эту функцию исполняет поплавковый механизм, расположенный в поплавковой камере ниже отверстия главного жиклера.
Если вы хотите понять принцип действия поплавкового регулятора уровня, пойдите в туалет и снимите крышку со сливного бачка. Внутри вы обнаружите поплавок, рычаг, соединяющий его с клапаном, и бак, заполненный водой. Откройте слив воды, и уровень воды упадет, а вместе с ним опустится поплавок, За счет этого откроется клапан, и бак начнет заполняться водой до тех пор, пока поднимающийся поплавок снова не закроет клапан. Поплавковый механизм карбюратора выполняет туже самую функцию, поддерживая постоянный уровень топлива.
Дроссель [ ]
Для того, чтобы управлять частотой вращения двигателя, необходимо какое либо устройство для ограничения количества поступающей в двигатель топливовоздушной смеси. В роли такого устройства может выступать круглая пластина, закрепленная в диффузоре на подвижной оси. Если пластину повернуть так, что она перекроет диффузор, воздушный поток остановится, а с ним и двигатель. Если повернуть ось, то пластина (если она находится в соответствующем угловом положении) допускает прохождение воздуха и образует небольшое сужение. Такое устройство называется дроссельной заслонкой мотылькового типа и используется на карбюраторах с постоянным сечением диффузора.
Другой способ ограничения количества поступающего воздуха заключается в применении подвижной дроссельной заслонки (или дросселя), расположенной в вертикальной расточке диффузора. Дроссель может перемещаться по расточке вверх и вниз, эффективно изменяя сечение диффузора так, что поток воздуха через карбюратор частично или полностью перекрывается. Таким образом, изменяется пропускная способность карбюратора. Такое устройство называется дроссельным золотником и применяется на карбюраторах шиберного типа (параграф 4). Комбинация двух вышеописанных устройств используется на карбюраторах постоянного разрежения (параграф 5). Карбюраторы как шиберного типа, так и постоянного разрежения относят к карбюраторам с переменным сечением. Управление дроссельной заслонкой обеспечивается при помощи троса, который связывает дроссельную заслонку или золотник с ручкой газа, расположенной на руле. Возвратная пружина установлена для автоматического закрытия дроссельной заслонки при отпускании ручки газа.
Пусковое устройство (для запуска холодного двигателя)(«подсос») [ ]
Для обеспечения успешного сгорания топливо в поступающей смеси должно быть полностью в испаренном виде. При холодном двигателе топливо конденсируется на его холодных металлических элементах, и, следовательно, оно больше не испаряется, в результате чего двигатель очень трудно запустить.
Чтобы компенсировать это приходится делать поступающую смесь значительно более богатой, чем при нормальной работе. Этого можно достичь тремя способами. Во-первых, вручную нажимая на утопитель поплавка для увеличения количества топлива в поплавковой камере; во-вторых, перекрывая («дросселируя») диффузор, и в-третьих, подавая больше топлива через отдельную пусковую систему («обогатитель»). Обычно все системы называются «подсосом», но, строго говоря, под это определение попадает только вторая система, которая работает за счет перекрытия диффузора.
После запуска двигателя он начинает прогреваться и, в конечном счете, необходимо будет выключить пусковое устройство, чтобы предотвратить переизбыток топлива в смеси, поступающей в двигатель.
Утопитель поплавка [ ]
Заслонка [ ]
Воздушная заслонка на входе диффузора используется для уменьшения поступающего в него воздуха. При прокручивании вала двигателя давление в диффузоре значительно понижается, благодаря этому увеличивается количество топлива в поступающей смеси.
Пусковое устройство [ ]
Современное пусковое устройство
Принцип действия этой системы аналогичен тому, по которому работает заслонка, но в данном случае для обогащения смеси используется отдельная система карбюратора. Рычаг или кнопка чаще всего при помощи троса, но иногда и непосредственно связаны с плунжером, включающим и отключающим пусковое устройство. При открытом пусковом устройстве и прокручивании вала двигателя (с прикрытой дроссельной заслонкой) воздух поступает в канал, минующий диффузор карбюратора, и смешивается с топливом, подающимся через жиклер пускового устройства из поплавковой камеры. Затем топливовоздушная смесь подается в двигатель через канал карбюратора, расположенный за диффузором и дроссельной заслонкой.
Автоматический обогатитель [ ]
Хотя для работы карбюратора автоматический обогатитель не столь существенен, он все больше становится отличительной чертой мопедов и скутеров.
Самое простое устройство, применяемое на некоторых мопедных карбюраторах, представляет собой небольшой кулачок, который отключает пусковое устройство при определенной степени открытия дроссельной заслонки.
На более сложных моделях установлен обогатитель с термочувствительным элементом, но он срабатывает не от температуры двигателя, а от температуры самого пускового устройства, которое снабжено электрическим нагревательным элементом. При холодном пусковом устройстве оно остается открытым, тем самым обогащая смесь. После запуска двигателя к нагревательному элементу пускового устройства начинает поступать ток. Данное устройство может быть оснащено биметаллической пластиной, изгибающейся при нагреве, или камерой, заполненной парафином, расширяющимся при нагреве: они, в свою очередь, воздействуют на плунжер, постепенно закрывая пусковое устройство по мере прогрева двигателя и самого пускового устройства
Система холостого хода [ ]
Резреэ карбюраторе шиберного типа, демонстрирующий работу системы холостого хода
Для работы карбюратора в широком диапазоне частот вращения двигателя одной только главной системы, в которой используется жиклер постоянного размера, будет недостаточно.
При очень низких скоростях вращения разрежения в диффузоре для подачи необходимого количества топлива через жиклер недостаточно; двигатель будет работать с перебоями и в итоге заглохнет. Для того, чтобы компенсировать это, в конструкцию карбюратора включена отдельная система для работы двигателя с низкими частотами вращения (от полного закрытия до 1/8 открытия дроссельной заслонки). Эта система носит название системы холостого хода.
Во многом аналогичным пусковому устройству образом, описанным выше, воздух поступает в обводной канал, минуя диффузор, и перемешивается с топливом, поступающим из поплавковой камеры через жиклер холостого хода. Затем топпивовоздушная смесь поступает в двигатель по каналу карбюратора, расположенному за диффузором и дроссельной заслонкой. Поскольку даже при закрытой дроссельной заслонке всегда существует небольшая щель между дросселем и диффузором, то присутствует небольшой пульверизационный эффект, использующийся для подачи получаемой смеси в двигатель. По мере открытия дроссельной заслонки этот эффект исчезает, и начинают функционировать другие системы.
Срез дросселя(карбюраторы шиберного типа) [ ]
Если нижнюю часть дросселя сделать плоской, то в промежутке между функционированием системы холостого хода и главной системы существовал бы «провал». Для предотвращения этого сторона дросселя, обращенная к воздушному фильтру. обрабатывается под углом, усиливающим пульверизационный эффект между ним и диффузором при частичных (от 1/8 до 1/4) открытиях дросселя,
Переходная система холостого хода (карбюраторы постоянного разрежения и с постоянным сечением диффузора) [ ]
Система переходных отверстий холостого хода керборетора постоянного резрежения
Эта система выполняет те же функции, что и срез на дросселе шиберного карбюратора. В данном случае она дозирует количество топлива от режимов холостого хода до малого открытия дроссельной заслонки. В системе холостого хода есть два дополнительных выходных канала, которые называются переходными, и расположены таким образом, что при закрытии дроссельной заслонки они оказываются перед ее гранью. При небольшой степени открытия дроссельной заслонки ее край по очереди проходит каждый канал, допуская тем самым прохождение воздушного потока, подхватывающего истекающее топливо.
Дозирующая (конусная) игла (карбюраторы постоянного разрежения и шиберного типа) [ ]
Для обеспечения переменного состава топливовоздушной смеси при открытии дроссельной заслонки от 1/4 до 3/4 в нижней части дроссельного золотника устанавливается конусная игла, которая вдвигается в калиброванное отверстие распылителя внизу диффузора карбюратора. Иногда распылитель размещается заподлицо с диффузором, хотя чаше всего он слегка выступает. Причина, по которой он выполняется выступающим, состоит в том, чтобы создать местный источник завихрений, способствующий рассеиванию и дроблению топлива в воздухе. Главный жиклер, установленный в корпусе распылителя, подобран так, чтобы размер его отверстия соответствовал полному открытию дросселя. При открытии дросселя в пределах от 1 /4 до 3/4, пока игла находится в распылителе, кольцевой зазор между иглой и стенкой распылителя значительно меньше, чем размер отверстия главного жиклера, и, следовательно, функцию управления расходом топлива осуществляют игла и распылитель. По мере того, как дроссельная заслонка открывается, и поднимается игла, кольцевой зазор увеличивается за счет ее конусности, и распылитель пропускает большее количество топлива, таким образом подстраиваясь под увеличение нагрузки.
Главная система [ ]
Карбюратор шиберного типа
Карбюратор постоянного разрежения
На карбюраторах постоянного разрежения и шиберного типа, при открытии дросселя приблизительно от 3/4 до полного открытия кольцевой зазор между иглой и распылителем превышает размер отверстия главного жиклера, и функции управления переходят к главному жиклеру. Ряд карбюраторов, где это оправдано, оснащается двухконтурной главной системой, состоящей из первичной и вторичной главной системы. Первичная главная система задействована с момента подъема золотника или поршня, в то время как управление вторичной главной системой осуществляется при помощи иглы, двигающейся в распылитель, так же, как в главной системе обыкновенного карбюратора. Карбюраторы с постоянным сечением диффузора из-за отсутствия дозирующей иглы часто оснащаются главными системами, число которых насчитывает от двух и более. Существует только несколько карбюраторов постоянного разрежения с двумя главными системами. Иногда дополнительную главную систему получают за счет использования так называемого «эконостата».
Эмульсионная трубка [ ]
На многих (но не но всех) карбюраторах, если тщательно обследовать распылитель, можно увидеть, что в стенке распылителя имеется множество маленьких отверстий. Также можно обратить внимание, что между стенкой распылителя и каналом, в котором он размещается, существует свободное пространство. Эту часть распылителя называют эмульсионной трубкой. Небольшой воздушный канал, называемый основным воздушным каналом, расположенный на входе в диффузор карбюратора, направляет небольшое количество воздуха, дозируемого воздушным жиклером, в камеру, образованную зазором между распылителем и корпусом карбюратора. Маленькие отверстия способствуют предварительному перемешиванию (или эмульсированию) топлива и воздуха, таким образом, повышая эффективность перемешивания и испарения топлива. Во многих случаях такие системы включают в себя систему холостого хода.
Ускорительный насос (карбюраторы с постоянным сечением диффузора и карбюраторы шиберного типа) [ ]
Применение ускорительного насоса решает характерную проблему внезапного обеднения смеси при резком открытии дроссельной заслонки. В заданный момент насос обогащает смесь необходимым количеством топлива, которое определяется степенью открытия дроссельной заслонки. На некоторых карбюраторах привод насоса осуществляется при помощи рычага, перемещающегося по дроссельному золотнику, а в других конструкциях на тягу воздействует кулачок, закрепленный на оси дроссельной заслонки. В обоих случаях далее рычаг или тяга воздействуют на диафрагменный насос, который впрыскивает или распыляет отмеренное количество топлива в диффузор.
Отсечной воздушный клапан (карбюраторы постоянного разрежения и шиберного типа) [ ]
Система подогрева карбюратора (карбюраторы постоянного разрежения и шиберного типа) [ ]
Многие карбюраторы оснащаются нагревательным устройством, предотвращающим «обледенение» карбюратора. Обледенение может происходить в условиях высокой влажности и низких температур воздуха (около 4-5 С°). Оно вызвано эффектом охлаждения при испарении топлива находящейся в воздухе воды. Это может привести к образованию в диффузоре карбюратора льда, который способен перекрыть выходные отверстия холостого хода, вызывая остановку или перебои в работе двигателя, а также заклинить дроссельную заслонку на карбюраторах постоянного резрежения.
Нефтеперерабатывающие компании добавляют в бензин присадки против обледенения, но их не всегда бывает достаточно для его предотвращения. Для гарантированного предотвращения этого эффекта некоторые изготовители снабжают карбюраторы системой подогрева, как в виде небольших электронагревательных элементов в каждом карбюраторе, так и за счет циркуляции охлаждающей жидкости двигателя вокруг карбюратора.
Датчик положения дроссельной заслонки (карбюраторы постоянного разрежения и шиберного типа) [ ]
Современные мотоциклы оснащаются датчиком положения дроссельной заслонки (TPS). Они не влияют на процессы дозирования топлива, а используются для предоставления информации о положении и перемещении(т.е. открытии или закрытии] дроссельной заслонки и скорости этого перемещения (насколько быстро открывается дроссельная заслонка) блоку управления бесконтактной системой зажигания для оптимизации угла опережения зажигания.
Принцип работы и устройство карбюратора
Карбюратор – это обязательный узел питания двигателя внутреннего сгорания автомобилей и мотоциклов. До конца XX века карбюраторы устанавливались на большинство автомобилей, но в наши дни их прочно вытеснили более удобные и функциональные инжекторные системы. Сейчас они часто встречаются в автомобилях возрастом 20 и более лет.
Принцип работы и устройство простейшего карбюратора
В первом устройстве, изобретенном Л. Христофорисом в 1876 году, топливо нагревалось, испарялось, образовавшиеся пары и потоки воздуха смешивались. Спустя год решение усовершенствовали, использовав принцип топливного распыления, который стал основой для следующих проектов.
До широкого распространения привычных нам устройств были барботажные модели и мембранно-игольчатые. Первые — в виде бензинового бака, в котором близко от поверхности располагалась доска и пара патрубков для подачи из атмосферы и забора смеси топлива и воздуха в мотор. Воздух перемещался под доской, непосредственно над топливом, обогащался парами и становился горючей смесью. Это была простая, но рабочая система. Дроссельная заслонка находилась отдельно. На функционирование мотора с барботажным узлом влияли природные условия — испаряемость зависела от температуры. Такую систему было сложно регулировать, она была взрывоопасна. Схема барботажного карбюратора.
Мембранно-игольчатое устройство размещается отдельно от бензобака. В нем было нескольких камер, жестко связанных с помощью штока. Седло клапана, через который подавалось топливо, запиралось иглой на штоке. Камеры были соединены топливным каналом и смесительной зоной. Параметры устройства определяли пружины, на которые надавливали мембраны. Такой карбюратор работал независимо от условий на улице и местоположения, был популярен в начале 19 века, когда его устанавливали на автомобилях и мототехнике, в самолетах с поршневыми моторами внутреннего сгорания. Схема мембранно-игольчатого карбюратора.
Устройство карбюратора наших дней
Сегодня используются поплавковые модели, которые являются самыми усовершенствованными. Их можно увидеть на большинстве машин. Устройство и работа карбюратора: 1 — регулировочный винт пускового устройства; 2 — штифт рычага 24, входящий в паз рычага 3; 3 — рычаг управления воздушной заслонкой; 4 — винт крепления тяги привода воздушной заслонки; 5 — регулировочный винт приоткрывания дроссельной заслонки первой камеры; 6 — рычаг дроссельной заслонки первой камеры; 7 — ось дроссельной заслонки первой камеры; 8 — рычаг привода дроссельной заслонки второй камеры; 9 — регулировочный винт количества смеси холостого хода; 10 — ось дроссельной заслонки второй камеры; 11 — рычаг дроссельной заслонки второй камеры; 12 — патрубок отсоса картерных газов в задроссельное пространство карбюратора; 13 — дроссельная заслонка второй камеры; 14 — выходные отверстия переходной системы второй камеры; 15 — корпус дроссельных заслонок; 16 — распылитель главной дозирующей системы второй камеры; 17 — малый диффузор; 18 — корпус топливного жиклера переходной системы второй камеры; 19 — распылитель ускорительного насоса; 20 — патрубок подачи топлива в карбюратор; 21 — распылитель эконостата; 22 — воздушная заслонка; 23 — шток пускового устройства; 24 — рычаг воздушной заслонки; 25 — крышка пускового устройства; 26 — штифт рычага 24, действующий от штока 23 пускового устройства; 27 — ось воздушной заслонки; 28 — крышка карбюратора; 29 — трубка с топливным жиклером эконостата; 30 — топливный фильтр; 31 — игольчатый клапан; 32 — эмульсионная трубка второй камеры; 33 — поплавок; 34 — главный топливный жиклер второй камеры; 35 — перепускной жиклер ускорительного насоса; 36 — рычаг привода дроссельных заслонок; 37 — рычаг привода ускорительного насоса; 38 — диафрагма ускорительного насоса; 39 — регулировочный винт качества (состава) смеси холостого хода; 40 — патрубок забора разрежения вакуумного регулятора опережения зажигания. 41 — корпус карбюраторов. 42 — электромагнитный запорный клапан; 43 — регулировочный винт добавочного воздуха заводской подрегулировки системы холостого хода; 44 — диафрагма пускового устройства.
Поплавковый карбюратор состоит из множества элементов:
Принцип работы карбюратора
Сначала горючее направляется в поплавковую камеру. В момент достижения необходимого уровня поплавок поднимается и перекрывает клапан, через который подается топливо. Когда поплавок опускается, подача топлива возобновляется.
Далее топливо идет в смесительную камеру, где создается горючая смесь. Сверху подается воздух, который соединяется с горючим. В камере находится распылительная трубка с жиклером, а также дроссель и диффузор. Жиклер — это пробка, которая не допускает вытекание топлива из поплавковой камеры. Заслонка, соединенная с педалью, называется дросселем. При надавливании ногой, она открывается, и горючая смесь попадает в цилиндр. В результате машина набирает скорость. В диффузоре находится распределительная трубка.
В момент запуска в смесительной камере формируется разрежение, из распылителя разбрызгивается топливо. Поднимается поток воздуха, который при смешении с топливом, переносит горючее в цилиндр.
В новейших устройствах помимо смесительной и поплавковой камер, находится также пусковое и дозирующее устройство, конструкция холостого хода, экономайзер, ускорительный насос. Устаревшие модели не обеспечивают полноценную работу мотора, поскольку в зависимости от того, холодный или горячий двигатель, смесь должна быть разной. Если запускают холодный двигатель, требуется горючая смесь, обогащенная топливом. В случае, когда мотор долго работал, необходима смесь с небольшим включением топлива.
Для увеличения скорости или езды в нагруженной машине, нужна смесь, сильно обогащенная топливом. Аналогичная ситуация при движении на холостом ходу, на малых оборотах. Такие условия простой карбюратор обеспечить не в силах.
С целью обогащения смеси топливом применяют насос-ускоритель. Когда резко выжимают педаль, проходит воздух, который движется быстрее топлива. С этим связана нехватка топлива в горючей жидкости. При наличии насоса силовой агрегат работает мощнее.
Система холостого хода идеальна для малых оборотов. При таком режиме силовой агрегат функционирует на обогащенной смеси. Однако, одной дозирующей системы недостаточно, ведь на холостом ходу дроссель открывается лишь частично. В новейших карбюраторах горючая смесь формируется около дросселя, поскольку в этом месте, даже если дроссель открыт не полностью, создается необходимое разрежение.
Для запуска мотора требуется смесь, которая обогащена топливом. С этой целью в смесительной камере предусмотрена заслонка с клапаном, через который проходит воздух. На приборной панели автомобиля есть ручка для управления клапаном. При вытягивании ручки клапан приоткрывается, и объем воздуха в смесительной камере сокращается. А количество горючего в смеси возрастает. В результате даже первые порции смеси достаточно насыщены, и мотор быстро заводится. При наличии спускового устройства двигатель работает даже при пониженных температурах.
Возможности дозирующего устройства позволяют создавать смесь, подходящую для работы двигателя в разных режимах. С помощью системы автоматически регулируется состав смеси при работе мотора с малой и средней нагрузкой. В таком режиме топливо подается через дозирующую систему. Однако, даже при полном открытии дросселя горючего часто недостаточно. По этой причине, когда дроссель практически полностью открыт, рычаг, соединенный с ним, воздействует на тягу привода экономайзера — так открывается дополнительный проход из поплавковой камеры. В итоге двигатель функционирует более мощно.
Классификация карбюраторов
Все карбюраторы можно различать по следующим признакам: