Кислота для чего используется
Применение кислот в быту и промышленности
Кислоты – это химические вещества, которые вступают в реакцию с различными реагентами. Благодаря этому свойству кислоты находят широкое применение, как в быту, так и в различных видах производства. Кислоты могут отличаться по летучести, растворимости в воде и устойчивости.
Разные виды кислот находят применение в разных сферах промышленности и быта. Все зависит от индивидуальных свойств определенного вещества.
Борная кислота.
Это вещество в жидком виде можно приобрести в аптеке. Она обладает антисептическими свойствами. Часто эту кислоту используют при приготовлении смеси для борьбы с насекомыми и другими вредителями.
Раствор борной кислоты часто используют в медицине и производстве. В промышленности чаще всего встречается техническая борная кислота.
Азотная кислота.
Этот вид химической продукции используется для различных целей. В бытовых условиях этой кислотой проводят травление металлических поверхностей, таких как ножи, платы и т.д.
Азотная кислота также используется для производства азотистых удобрений. В фармакологии это вещество применяют для производства лекарственных препаратов. Ювелирная промышленность использует эту кислоту для обработки металлов и проведения определенных процессов.
Серная кислота.
Ее можно встретить в любой производственной лаборатории. Это вещество помогает синтезировать определенный элемент, который связан с другими в растворе. Серная кислота также применяется для производства взрывчатых смесей.
Моющие средства специального назначения часто содержат в своем составе серную кислоту. Перед нанесением на металл гальванического покрытия, поверхность обрабатывают серной кислотой. Это позволяет удалить все виды загрязнений, в том числе ржавчину и оксиды.
Муравьиная кислота.
Этот вид химических элементов очень распространен в сельскохозяйственном производстве. Муравьиная кислота замедляет процесс гниения и используется как консервант в кормах, которые закладываются на хранение.
Пчеловоды используют эту кислоту для обработки ульев. Это позволяет избавиться от вредителей. Также муравьиная кислота применяется в медицине и ее можно приобрести в аптеке.
Соляная кислота.
Советы в статье «Как выбрать репетитора по русскому языку» здесь.
Этот вид кислот используется в медицине для лечения болезней желудка. Соляная кислота входит в состав желудочного сока. При пониженной кислотности пациенту назначают раствор соляной кислоты.
Кислоты
Содержание
Определение кислоты
История развития представлений о кислотах
Кислоты как класс химических соединений, обладающих рядом близких свойств, известны с древнейших времён.
В 1778 году французский химик Антуан Лавуазье предположил, что кислотные свойства обусловлены наличием в их составе кислорода. Эта гипотеза оказалась несостоятельной, так как многие кислоты не имеют в своём составе кислорода, в то время как многие кислородсодержащие соединения не проявляют кислотных свойств. Тем не менее, именно эта гипотеза дала название кислороду как химическому элементу. В 1833 году немецкий химик Юстус Либих определил кислоту как водородсодержащее соединение, в котором водород может быть замещён на металл.
Согласно сольвентной теории Франклина, созданной в 1924 году, кислотой называлось вещество, при растворении увеличивавшее число тех же катионов, которые образуются при диссоциации растворителя. Данная теория сыграла важную роль в исследовании неводных растворов кислот. Химическая теория кислот и оснований формировалась в работах А. Ганча (1917—1927). По Ганчу, кислотами называются соединения водорода, в которых последний может быть замещён на металл или неметаллический радикал с образованием соли.
В 1923 году появились теории кислот и оснований Брёнстеда — Лоури и Льюиса, широко применяемые в настоящее время.
Кислота в теории Брёнстеда — Лоури
Кислота в теории Льюиса
Ключевым свойством, определяющим способность взаимодействия кислоты Льюиса с основанием Льюиса, является энергетическое соответствие между низшей свободной молекулярной орбиталью, принимающей электронную пару, и высшей занятой молекулярной орбиталью, с которой эта электронная пара уходит. Эта способность была учтена в рамках принципа жёстких и мягких кислот и оснований Пирсона (принцип ЖМКО). Данный принцип устанавливает, что наиболее склонны взаимодействовать мягкие кислоты с мягкими основаниями и жёсткие кислоты с жёсткими основаниями. При этом под жёсткими кислотами понимаются кислоты Льюиса, обладающие большим положительным зарядом, большой электроотрицательностью и низкой поляризуемостью. Напротив, мягкие кислоты обладают малым положительным зарядом, низкой электроотрицательностью и высокой поляризуемостью. Поскольку данные свойства изменяются плавно, ряд кислот Льюиса занимает промежуточное положение между жёсткими и мягкими. Принцип ЖМКО не имеет количественного критерия оценки силы кислот, поэтому он не может быть применён для аналитических расчётов.
Кислота в общей теории Усановича
В 1939 году М. И. Усанович сформулировал общую теорию кислот и оснований, согласно которой кислотой является частица, которая может отдавать катионы, в том числе протон, или присоединять анионы, в том числе электрон. Таким образом, понятие кислоты, по Усановичу, включает как кислоты Брёнстеда, так и кислоты Льюиса, а также окислители. Кроме того, само понятие кислотности, как и основности, в общей теории Усановича рассматривается не как функция вещества как такового, а как роль, которую оно играет в зависимости от партнёра по реакции.
Классификация кислот
Кроме подразделения на кислоты Льюиса и кислоты Брёнстеда, последние принято классифицировать по различным формальным признакам:
Номенклатура кислот
Номенклатура неорганических кислот
Названия кислородсодержащих кислот состоят из двух частей: собственного названия кислоты, выраженного прилагательным, и группового слова кислота (серная кислота, фосфорная кислота). Собственное название кислоты образуется от русского названия кислотообразующего элемента путём добавления различных суффиксов:
Если кислотообразующий элемент в двух кислотах находится в одной и той же степени окисления, но кислоты отличаются по «содержанию воды», то для кислоты с меньшим содержанием кислорода к названию добавляют приставку мета-, а для кислоты с большим содержанием кислорода — приставку орто-, например, метафосфорная кислота HPO3 и ортофосфорная кислота H3PO4.
Кислородсодержащие кислоты с несколькими кислотообразующими элементами называются изополикислотами. Их обычно называют традиционными названиями (дифосфорная кислота H4P2O7, дисерная кислота H2S2O7).
Кислоты, в которых атомы кислорода заменены на атомы серы, называются тиокислотами и имеют соответствующую приставку тио- (тиофосфорная кислота H3PO3S). Если гидроксильные группы кислоты или атомы кислорода замещены на атомы галогенов или аминогруппу, то к названию также добавляется соответствующая приставка (амидофосфорная кислота H2PO3NH2), а замещённые серные кислоты по традиции называют сульфоновыми (хлорсульфоновая кислота ClSO3H).
В систематических названиях кислот к корню латинского названия кислотообразующего элемента добавляют суффикс -ат, а названия остальных элементов или их групп в анионе обозначаются приставками. В скобках указывают степень окисления кислотообразующего элемента, если она имеет целочисленное значение. В противном случае в название включают и число атомов водорода: HClO4 — тетраоксохлорат(VII) водорода (хлорная кислота), HAuCl4 — тетрахлороаурат(III) водорода (золотохлористоводородная кислота), H[Sb(OH)6] — гексагидроксостибат(V) водорода и т. д.
Номенклатура органических кислот
Традиционно для простейших карбоновых кислот наиболее распространены тривиальные названия, некоторые из которых образовались ещё в XVII веке (уксусная кислота, масляная кислота, адипиновая кислота, фталевая кислота). Высшие карбоновые кислоты с чётным числом атомов углерода также имеют тривиальные названия, которые, однако, так сходны, что их употребление может вызывать путаницу (каприловая кислота, каприновая кислота).
Систематические названия карбоновых кислот образуются путём добавления окончания -овая кислота к названию соответствующего кислоте алкана (гексановая кислота, пентакозановая кислота). В случае дикарбоновых кислот используется окончание -диовая кислота (декандиовая кислота). Иногда название более удобно образовывать при помощи окончания -карбоновая кислота, которое означает замену одного атома водорода в соединении на карбоксильную группу. Такой подход применяется в тех случаях, когда карбоксильная группа присоединена к циклической системе (циклопропанкарбоновая кислота).
Если в карбоновой кислоте содержится пероксидный мостик, то к названию таких кислот добавляются приставки перокси-, пер- или над- (надуксусная кислота, пероксибензойная кислота).
Для обозначения серосодержащих органических кислот используют окончания -сульфоновая кислота (RSO3H), -сульфиновая кислота (RSO2H), -сульфеновая кислота (RSOH), аналогичным образом добавляя их к названию родоначального алкана RH.
Формула | Название по ИЮПАК | Тривиальное название | Происхождение тривиального названия |
---|---|---|---|
НСООН | метановая кислота | муравьиная кислота | лат. formica — муравьи |
СН3-СООН | этановая кислота | уксусная кислота | лат. acetum — уксус |
СН3-СН2-СООН | пропановая кислота | пропионовая кислота | др.-греч. proto + pion — первый + жир |
СН3-(СН2)2-СООН | бутановая кислота | масляная кислота | лат. butyrum — масло |
СН3-(СН2)3-СООН | пентановая кислота | валериановая кислота | лат. Valeriána — валериана |
СН3-(СН2)4-СООН | гексановая кислота | капроновая кислота | лат. caper — коза |
СН3-(СН2)5-СООН | гептановая кислота | энантовая кислота | др.-греч. oenanthe — цветок винограда |
СН3-(СН2)6-СООН | октановая кислота | каприловая кислота | лат. caper — коза |
СН3-(СН2)7-СООН | нонановая кислота | пеларгоновая кислота | лат. Pelargonium — пеларгония |
СН3-(СН2)8-СООН | декановая кислота | каприновая кислота | лат. caper — коза |
СН3-(СН2)9-СООН | ундекановая кислота | ундециловая кислота | |
СН3-(СН2)10-СООН | додекановая кислота | лауриновая кислота | лат. Laurus — лавр |
СН3-(СН2)11-СООН | тридекановая кислота | тридециловая кислота | |
СН3-(СН2)12-СООН | тетрадекановая кислота | миристиновая кислота | лат. Myristica — мускатный орех, др.-греч. mύρων — оливковое масло |
СН3-(СН2)13-СООН | пентадекановая кислота | пентадециловая кислота | |
СН3-(СН2)14-СООН | гексадекановая кислота | пальмитиновая кислота | лат. palma — пальмовое дерево |
СН3-(СН2)15-СООН | гептадекановая кислота | маргариновая кислота | др.-греч. margaron — жемчуг |
СН3-(СН2)16-СООН | октадекановая кислота | стеариновая кислота | др.-греч. stear — сало |
СН3-(СН2)17-СООН | нонадекановая кислота | нонадециловая кислота | |
С6Н5-СООН | бензолкарбоновая кислота | бензойная кислота | |
СН2=СН-СООН | пропеновая кислота | акриловая кислота | лат. acer + olere — острый запах |
СН≡С-СООН | пропиновая кислота | пропиоловая кислота | |
СН3-С(СН3)2-СООН | 2,2-диметилпропановая | пивалиновая кислота | сокр. от пинаколин + валериановая кислота [К 1] |
Диссоциация и сила кислот
Количественное описание силы кислот
Теория кислот и оснований Брёнстеда, рассматривающая кислоту, как частицу, способную отдавать протон, даёт возможность количественно оценить эту способность кислоты — её силу. Сила кислот описывается при помощи константы равновесия реакции диссоциации кислоты в водном растворе, называемой также константой кислотности Ka. Чем больше значение Ka, тем больше способность кислоты отдавать протон и тем выше её сила. Также константа кислотности выражается в виде более удобной величины pKa — отрицательного логарифма величины Ka. Например, уравнение диссоциации и константу кислотности плавиковой кислоты можно записать следующим образом:
Кислота | Значение (m — n) | Ka |
---|---|---|
HClO | 0 | 10 −8 |
H3AsO3 | 0 | 10 −10 |
H2SO3 | 1 | 10 −2 |
H3PO4 | 1 | 10 −2 |
HNO3 | 2 | 10 1 |
H2SO4 | 2 | 10 3 |
HClO4 | 3 | 10 10 |
Кислоты принято условно подразделять по их силе на очень сильные ( pKa ), сильные ( 0 ), средней силы ( 4,5 ), слабые ( 9 ), очень слабые ( pKa > 14 ).
Для приблизительной оценки силы кислот применяют эмпирические правила Полинга. Так, для неорганических кислородсодержащих кислот вида HnXOm известно эмпирическое правило, по которому значение первой константы связано со значением (m — n). Если A=(m — n) = 0, то кислота очень слабая, при 1 — слабая, при 2 — сильная, и, наконец, при 3 кислота очень сильная. Кроме того, если такую кислоту записать в виде (HO)aXOb, выделив отдельно атомы кислорода, входящие в состав гидроксильных групп (заметим, что b=m-n), то величину константы диссоциации по первой ступени можно оценить по уравнению:
pKB = a1 = 8 − 5b = 8 − 5A, то есть величина первой константы диссоциации определяется, в основном, числом негидроксильных атомов кислорода b. Эту зависимость связывают с отрицательным индуктивным влиянием этих атомов кислорода на связи O-H, за счёт которого облегчается отщепление протона от молекулы кислоты.
Другой характеристикой силы кислоты может служить степень диссоциации α — отношение количества диссоциированных на ионы молекул кислоты к их исходному количеству в растворе. Степень диссоциации выражается в процентах либо в виде безразмерной величины от 0 до 1:
Влияние растворителя
Нивелирование и дифференцирование кислот
Кислоты с pKa от 0 до 14 в воде диссоциированы не полностью: их кислотные свойства в растворе зависят от значения pKa. Например, монохлоруксусная и дихлоруксусная кислоты с pKa 2,86 и 1,26 соответственно сильно отличаются по степени диссоциации (в 0,1 М растворе первая диссоциирует на 11 %, а вторая — на 52 %). В этом случае говорят о дифференцирующем эффекте растворителя. Интервал pKa, в котором кислоты дифференцированы по силе, равен показателю константы автопротолиза растворителя. Для разных растворителей этот интервал различен (14 для воды, 19 для этанола, 33 для аммиака и т. д.), соответственно, и набор дифференцированных и нивелированных кислот для них разный.
Если растворитель обладает основными свойствами, то в нём все кислоты становятся более сильными и большее число кислот нивелируется по силе (например, в аммиаке уксусная кислота диссоциирует нацело, хотя в водных растворах она имеет среднюю силу). Напротив, если основные свойства растворителя понижаются, то сильные кислоты могут стать слабыми, а число нивелированных кислот понижается. Например, уксусная кислота служит нивелирующим растворителем для хлорной кислоты HClO4, диссоциирующей в ней нацело, и хлороводородной кислоты HCl и серной кислоты H2SO4, являющихся в уксусной кислоте слабыми.
Влияние диэлектрической проницаемости
Следовательно, переход от растворителя с высокой диэлектрической проницаемостью (более полярных) к растворителям с меньшей диэлектрической проницаемостью (менее полярным) должен сильно уменьшать силу нейтральных кислот и сравнительно мало влиять на заряженные кислоты. Так, в воде фенол в 5 раз сильнее иона триэтиламмония, однако, в метаноле фенол в 2500 раз слабее этого иона.
Влияние специфической сольватации анионов
Растворитель может сильно увеличивать кислотность веществ, специфически стабилизируя анионы, образующиеся в результате диссоциации.
Влияние строения кислот на их силу
Существует несколько факторов, которые определяют относительную силу органических и неорганических кислот и которые связаны со строением той или иной кислоты. Часто несколько факторов действуют одновременно, поэтому трудно предсказать их суммарное влияние. Среди наиболее значимых можно выделить следующие факторы.
Функция кислотности Гаммета и суперкислоты
Количественную оценку кислотно-основных свойств очень сильных или концентрированных кислот невозможно провести с использованием шкалы pH, поскольку для водных растворов эта шкала ограничена снизу значением pH = 0, которому соответствует 5%-ый раствор серной кислоты H2SO4. В то же время такая необходимость возникает. Для решения данной задачи в 1932 году Л. Гамметом и А. Дейрупом была предложена функция кислотности Гаммета H0. Их подход заключался в изучении кислотно-основного равновесия очень сильных кислот в присутствии менее сильного основания, чем вода, и измерении соотношения концентраций протонированной и непротонированной форм этого основания методом электронной спектроскопии. Это дало возможность продлить шкалу кислотности в отрицательную области, благодаря чему стала возможной оценка кислотности концентрированных растворов неорганических кислот.
Введённая Гамметом шкала кислотности широко применяется для оценки силы суперкислот — сред с кислотностью выше, чем кислотность 100%-ой серной кислоты, функция кислотности Гаммета для которой составляет H0 = −12. Среди индивидуальных неорганических соединений сильными кислотами являются хлорная кислота HClO4 (H0 = −13), хлорсульфоновая кислота ClSO3H (H0 = −13,8) и фторсульфоновая кислота FSO3H (H0 = −15,1). Самой сильной из известных органических кислот является трифторметансульфокислота CF3SO3H (H0 = −14,1).
К суперкислотам относятся также смеси кислот Брёнстеда и кислот Льюиса, например, смесь HF и фторида сурьмы(V) SbF5 в разных соотношениях (H0 Химические свойства кислот
Получение кислот
Нелетучая серная кислота при нагревании способна вытеснять летучие кислоты из их солей
Кислоты — классификация, свойства, получение и применение.
Кислотам дали такое название не просто так. Большинство из них имеют кислый вкус. С некоторыми из них знаком каждый из вас. Это, например, уксусная кислота, которая есть в каждом доме, аскорбиновая кислота (она же витамин C), лимонная кислота и т.д. Но не стоит все кислоты пробовать на вкус. Кислоты являются очень едкими веществами. Даже всем нам привычная и известная аскорбиновая кислота в большой концентрации будет вредна нашему организму. А от более сильных кислот — серной, соляной и даже уксусной — можно получить очень сильные ожоги, вплоть до летального исхода. Поэтому при работе с кислотами нужно быть осторожными, а также соблюдать технику безопасности.
Таблица названий некоторых кислот и их солей
Название кислоты | Формула | Название соли |
---|---|---|
Серная | H2SO4 | Сульфат |
Сернистая | H2SO3 | Сульфит |
Сероводородная | H2S | Сульфид |
Соляная (хлористоводородная) | HCl | Хлорид |
Фтороводородная (плавиковая) | HF | Фторид |
Бромоводородная | HBr | Бромид |
Йодоводородная | HI | Йодид |
Азотная | HNO3 | Нитрат |
Азотистая | HNO2 | Нитрит |
Ортофософорная | H3PO4 | Фосфат |
Угольная | H2CO3 | Карбонат |
Кремниевая | H2SiO3 | Силикат |
Уксусная | CH3COOH | Ацетат |
Классификация кислот
По содержанию кислорода | |
---|---|
Кислородсодержащие (H2SO4) | Бескислородные (HCl) |
По количеству содержащихся катионов водорода (H+) | ||
---|---|---|
Одноосновные (HCl) | Двухосновные (H2SO4) | Трёхосновные (H3PO4) |
Понятие «одноосновная кислота» произошло по причине того, что для нейтрализации одной молекулы одноосновной кислоты нам понадобится одна молекула основания. для двухосновной — соответственно две молекулы и т. д.
По растворимости (в воде) | |
---|---|
Растворимые (HCl) | Нерастворимые (H2SiO3) |
По силе (степени диссоциации) | |
---|---|
Сильные (H2SO4) | Слабые (CH3COOH) |
По летучести | |
---|---|
Летучие (H2S) | Нелетучие (H2SO4) |
По устойчивости | |
---|---|
Устойчивые (H2SO4) | Неустойчивые (H2CO3) |
Свойства кислот
Изменение цвета индикаторов в кислой среде
Индикатор | Нейтральная среда | Кислая среда |
---|---|---|
Метилоранж | оранжевый | красный |
Лакмус | фиолетовый | красный |
Фенолфталеин | бесцветный | бесцветный |
Бромтимоловый синий | зеленый | желтый |
бромкрезоловый зеленый | синий | желтый |
Химические свойства кислот
H2SO4 + 2Na → Na2SO4 + H2↑
Металлы, находящиеся в ряду активности после водорода, не вступают в реакцию с кислотой (кроме концентрированной серной кислоты).
Азотная и концентрированная серная кислоты проявляют свойства окислителей, и продукты реакций будут зависеть от концентрации, температуры и природы восстановителя.
H2SO4 + MgO → MgSO4 + H2O
H2SO4 + 2NaOH → Na2SO4 + H2O
H2SO4 + K2CO3 → K2SO4 + H2O + CO2↑
3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4
Получение кислот
H2O + SO3 →H2SO4
H2 + Cl2 → 2HCl
3H2SO4 + 2K3PO4 → 3K2SO4 + H3PO4
Применение кислот
В настоящее время, минеральные и органические кислоты находят множество сфер применения.
Серная кислота (H2SO4), находит широкое применение в химической технологии, для производства лакокрасочных материалов, производстве минеральных удобрений, в пищевой промышленности (пищевая добавка Е513), в качестве электролита в производстве аккумуляторных батарей.
Раствор двухромовокислого калия в серной кислоте (хромовая смесь) используются в лабораториях для мытья химической посуды. Являясь сильным окислителем, хромка позволяет отмывать посуду от следов загрязнений органическими веществами. Так же, хромовая смесь используется в органическом синтезе.
Борная кислота (H3BO3) используется в медицине как антисептик, в качестве флюса при пайке металлов, как борсодержащее удобрение, в домашнем хозяйстве используется как средство от тараканов.
Широко известны в домашнем использовании при выпечке уксусная и лимонная кислоты. Также в быту их используют для удаления накипи.
Знакомая всем с детства аскорбиновая кислота, более известная в народе как витамин С, применяется при лечении простудных заболеваний.
Азотная кислота (HNO3) находит применение при производстве взрывчатых веществ, при производстве минеральных азотсодержащих удобрений (аммиачная, калиевая селитра), в производстве лекарственных средств (нитроглицерин).