Кислотное число трансформаторного масла что показывает
Испытание трансформаторного масла
Трансформаторное масло для изоляции и охлаждения некоторых видов электроэнергетического оборудования. В качестве примера можно привести масляные высоковольтные выключатели, реакторное оборудование и силовые трансформаторы. Для нормальной работы перечисленных устройств должны регулярно проводиться испытания трансформаторного масла. С чем связана такая необходимость, и какова методика испытаний Вы узнаете, ознакомившись с данной статьей.
Зачем нужно проводить испытания трансформаторного масла?
Масло обладает определенными электрическими и физическими свойствами, которые со временем изменяются и перестают отвечать действующим нормам. То есть, можно сказать, что оно стареет. Давайте рассмотрим, какие при этом могут происходить изменения нормы показателей.
Заметим, что в сухих трансформаторах также наблюдается процесс старения твердой изоляции.
Изменение физических свойств
От физических характеристик эксплуатационного масла напрямую зависит, насколько надежно будет функционировать электрическое оборудование. Поэтому в процессе проверки уделяется пристальное внимание следующим свойствам трансформаторного масла:
Изменение электрических свойств
По сути, трансформаторное масло является диэлектрической средой, соответственно, показателями качества для него будут изоляционные характеристики. К таковым относятся:
Таблица 1. Соотношение рабочего и пробивного напряжения.
Электрические показатели, как и физические, со временем изменяются, что требует их проверки на соответствие нормам РД 34.45-51.300-97.
Порядок и методика проведения испытаний
Существует установленный порядок для процедуры испытаний трансформаторного масла, он включает в себя три этапа:
Разобравшись с порядком проведения испытаний, рассмотрим основные методики.
Сокращенный химический анализ
Данная методика испытаний включает в себя:
Полный химический анализ
Изоляционное масло подвергается полным испытаниям в тех случаях, когда даже одна из характеристик становиться критичной или замечен процесс интенсивного старения. Благодаря полному физико-химическому анализу можно с большой точностью определить допустимый срок технической эксплуатации, установить вероятную причину старения и рекомендовать процедуру восстановления. При полном испытании проводятся все тесты сокращенного анализа и дополнительно проверяются следующие характеристики:
В состав современных лабораторий входят автоматические ультразвуковые установки, позволяющие с большой точностью определить количественное содержание примесей.
Определение электрической прочности
Данный показатель можно назвать основным параметром, описывающим изоляционные свойства жидкого диэлектрика. Расчет прочности трансформаторного масла производится по формуле: E = UНП / h, где UНП – величина напряжения пробоя, h – межэлектродный зазор. Результаты с пробы снимаются при помощи специального прибора, например такого, как на рисунке ниже.
Устройство контроля электрической прочности КПН-901
Характерно, что показатели измерения пробивного напряжения не зависят от проводимости масла, но обе эти характеристики чувствительны к влаго- и газосодержанию, а также наличию технологических примесей. Как только перечисленные показатели выходят за допустимые пределы, наблюдается увеличение проводимости и снижение электрической прочности.
Объем и периодичность испытаний
Согласно действующим нормам масло испытывается в следующих случаях:
Пример протокола испытания с пояснением
Приведем в качестве примера протокол испытаний эксплуатационного трансформаторного масла, с разделением основных информационных полей.
Пример протокола испытаний трансформаторного масла
В протоколе содержится следующая информация:
Характеристики трансформаторного масла.
В связи с тем, что характеристики трансформаторного масла в процессе эксплуатации ухудшаются, его качество приходится периодически проверять. Такие проверки осуществляют обычно один раз в три года, делая сокращенный анализ масла.
Основными характеристиками трансформаторного масла являются:
· Кислотное число, определяет количество едкого калия (в миллиграммах), которое требуется для нейтрализации всех свободных кислот. Кислотное число характеризует степень старения (окисления) трансформаторного масла.
· Реакция водной вытяжки, характеризует наличие в масле нерастворимых кислот и щелочей. В годном для эксплуатации трансформаторе реакция водной вытяжки должна быть нейтральна. Кислоты оказывают разрушительное действие на материалы, из которых изготовлен трансформатор (вызывают коррозию металла трансформатора, разрушают изоляцию его обмоток).
· Температура вспышки масла не должна быть ниже установленных значений во избежание воспламенения масла при повышении температуры, вызванном перегрузкой трансформатора. Для обычных трансформаторных масел значение температуры вспышки лежит в диапазоне 130-150 °С.
· Содержание механических примесей. Примеси появляются в результате растворения красок, лаков и изоляции; в виде угля который образуется при электрической дуге. Механические примеси в масле могут содержаться в виде осадка или в взвешенном состоянии и вызывают перекрытие между изолированными друг от друга элементами, понижают электрическую прочность масла.
· Электрическая прочность определяется пробивным напряжением трансформаторного масла. Пробивное напряжение свежего сухого масла должно быть не ниже 30 кВ. Снижение значения пробивного напряжения говорит о наличии примесей в масле (волокна, воздух, вода и т.д.)
· Тангенс угла диэлектрических потерь характеризует изоляционные свойства трансформаторного масла (показывает насколько масло хороший диэлектрик). Загрязнение и старение трансформаторного масла в процессе его эксплуатации ведет к повышению диэлектрических потерь в масле.
· Влагосодержание в трансформаторном масле характеризует интенсивность старения изоляции под воздействием значительных температур (т.е. говорит о систематических перегрузках трансформатора), а также свидетельствует о нарушении герметичности трансформатора.
· Вязкость характеризует подвижность масла и должна быть небольшой, для того чтобы масло хорошо циркулировало и отводило тепло.
· Температура застывания масла. При низкой температуре окружающей среды повышается вязкость масла и ухудшается его циркуляция, что приводит к перегреву и ускорению старения изоляции, а также может привести к повреждению подвижных элементов конструкции трансформатора (РПН, масляный насос). По нормам температура застывания масла трансформаторов должна быть не выше – 45° С.
· Цвет. Свежее масло имеет обычно светло-желтый цвет. В процессе эксплуатации масло темнеет и приобретает темно-коричневую окраску. Изменение цвета масла происходит под влиянием его нагрева и загрязнения смолами и осадками.
Кроме перечисленных существуют и другие характеристики трансформаторных масел: плотность, газосодержание, стабильность, температура самовоспламенения и т.д.
Монтаж открытых электропроводок, выполняемых плоскими проводами АППР, АППВ, ППВ, проводят в определенной технологической последовательности. Сначала размечают места установки светильников, выключателей и штепсельных розеток, линий электропроводки, крепления провода, т.е. точек забивки гвоздей, установки скоб и мест прохода провода через стены и перекрытия, начиная от группового щитка с постепенным переходом к отдельным помещениям.
Места установки светильников на потолке размечают в зависимости от их числа. Если в центре помещения устанавливают один светильник, то место его положения определяют натягиванием из противоположных углов крест-накрест двух шнуров. Точку их пересечения на полу отмечают мелом, затем со стремянки отвесом эту точку переносят на потолок. Если нужно установить два светильника в помещении на потолке, то на полу отбивают среднюю линию, делят ее на четыре равные части. Разметку переносят на потолок. Светильники устанавливают от стены на расстоянии 1/4 длины помещения.
После определения мест установки светильников на стене и потолке с помощью шнура отбивают линию будущих электропроводок. На линии отмечают точки крепления провода, а также точки сквозных отверстий для прохода проводов через стены и перекрытия. Далее, используя шаблон, намечают места установки ответвительных коробок, штепсельных розеток и выключателей.
Инструмент, механизмы и приспособления для пробивных работ:
а — шлямбур; б — бороздорез; в — бурик; г — фугальный электрический молоток с набором рабочего инструмента
Операции подготовки плоского провода перед монтажом: а — присоединение; б — изгибание на ребро в плоскости стены
После правки и отрезания проводов их сматывают в бухточки. Прокладку проводов начинают с ближайшей к групповому щитку ответвительной коробки. На концах провода длиной 75 мм вырезают разделительное основание. У трехжильного провода разрезают также перемычку между второй и третьей жилами (рис. а). Провод укладывают, начиная от коробки, по всему прямолинейному участку до места поворота трассы. При этом провод на другом конце временно закрепляют, тщательно выправляют, укладывают по всей длине участка и окончательно закрепляют на всем протяжении трассы. При прокладке плоских проводов с разделительной перегородкой (кроме проводов АППР) по сгораемым основаниям под них по всей длине прокладывают асбест толщиной не менее 3 мм с выступом от края провода не менее 10 мм.
Плоские провода с разделительным основанием крепят гвоздями, защищая провода от повреждения. Под шляпки гвоздей во влажных неотапливаемых помещениях нужно подкладывать пластмассовые, резиновые или эбонитовые шайбы. Провода без разделительного основания крепят скобами с помощью дюбелей или гвоздей, с расстоянием между точками крепления не более 400 мм. У плоских проводов с разделительным основанием при изгибе их на ребро (при повороте трассы на 90°) в месте изгиба вырезают основание на длине 40—60 мм.
Универсальные клещи КУ-1 и выполняемые с их помощью монтажные операции:
а — отрезание провода; б — г — удаление перемычки; д — снятие изоляции; е — изготовление
колец
При разделке плоских проводов часто используют клещи КУ-1 или МБ-241, с помощью которых можно разрезать пленку, выкусывать ее, снимать изоляцию с концов проводов, зачищать жилы и изгибать колечки на концах проводов для подсоединения их под контактный винт.
Следующими операциями электромонтажа являются соединение и ответвление плоских проводов в ответвительных коробках. Эти операции выполняют сваркой, опрессованием или пайкой с последующей изоляцией полиэтиленовыми колпачками или изолирующей лентой. Провода в цепях штепсельных розеток соединяют непосредственно на контактах розеток.
Прокладку незащищенными проводами на изоляторах применяют в производственных и складских помещениях по стенам, потолкам и нижнему поясу ферм в сухих, влажных, сырых и особо сырых помещениях, а также снаружи.
Детали и конструкции для крепления изоляторов и проводов изготовляют на заводах. Каждая конструкция представляет собой металлическое основание с изоляторами, на которых специальными держателями закрепляют провода. Опорные металлические конструкции (траверсы) изготовляют для крепления к фермам и стенам сваркой, хомутами для двух-, трех- и четырехпроводных линий.
Примеры выполнения электропроводки на изоляторах: а — по фермам; б— по стенам; в — держателями
Как правило, при монтаже электропроводок на изоляторах разметку электропроводки делают так же, как и при проводке плоскими проводами.
Изоляторы устанавливают «юбкой» вниз при всех способах их крепления. Далее устанавливают концевые изоляторы у проходов через стены и при переходе проводов с одной смежной стены на другую. Крюки и якоря с изоляторами закрепляют вмазкой. Проходы проводов через стены и перекрытия выполняют в изоляционных трубках, оконцованных втулками. В каждой трубке размещают один провод.
На месте монтажа или в МЭЗ заготовляют провода и прокладывают их по подготовленным трассам, причем от проводов до поверхности стен и перекрытий минимальное расстояние должно быть не менее 10 мм.
Спуски проводов от механических повреждений защищают на высоте от пола или площадки обслуживания не менее 1,5 м, закрывая их угловой сталью или прокладывая в трубах.
Провода закрепляют на штыревых изоляторах вязальной оцинкованной проволокой, на троллейбусных — промежуточными и концевыми держателями.
Электропроводки, выполненные изолированными и защищенными проводами и кабелями, подвешенными к стальному тросу диаметром 3—8 мм или специальными проводами АВТ; АВТУ; АВТВ; АВТВУ, которые имеют между тремя или четырьмя свитыми жилами собственный несущий оцинкованный трос, называют тросовыми электропроводками.
Монтаж элементов тросовых электропроводок:
а — анкер с натяжной муфтой; б — концевая заделка троса с помощью коуша и плашечных зажимов; в — несущий трос; г — натяжной сквозной болт с крюком; д— натяжной сквозной болт с кольцом; е — прокладка изолированных проводов на тросовых подвесках с заглушкой проводов на изоляторах орешкового типа; ж — заземление троса провода APT с помощью свободного конца петли
Этот вид электропроводок является наилучшим для индустриального монтажа. Его применяют в любых условиях среды, включая взрывоопасные зоны отдельных классов. При пролетах между подвесками троса 6 и 12 м стрелы провеса троса должны быть соответственно 100—150 и 200—250 мм.
В тросовой проводке в основном применяют элементы, изготовляемые на заводах. К торцовым стенам тросы крепят на проходных анкерах или анкерах, прикрепляемых к сквозным штырям, болтам или дюбелям.
На конце троса делают петлю и устанавливают тросовый зажим и муфты, позволяющие регулировать натяжение троса. При электропроводках тросовыми проводами применяют специальные ответвительные коробки, которые одновременно используют для подвески тросового провода и светильников. Внутри коробки имеется устройство для крепления троса. Ответвления выполняют без разрезания провода с помощью сжимов в пластмассовом кожухе. Узлы тросовой проводки заготовляют на заводах или в МЭЗ на технологических линиях и поставляют на место монтажа в контейнерах.
Тросовая ответвительная коробка с крюком для подвески светильников
Монтаж электропроводок легкими кабелями с резиновой и пластмассовой изоляцией:
a — способы крепления кабеля; б — устройство поворота под углом 90°; в — устройство ответвления при нескольких параллельно проложенных кабелях
Для монтажа тросовых электропроводок сначала размечают места крепления анкерных и промежуточных конструкций вдоль помещения по линии расположения светильников или силовых электроприемников, выдерживая расстояния между подвесками, ответвительными коробками и светильниками по проекту и эскизам замеров на месте монтажа. Далее крепят анкерные и натяжные устройства к основным строительным элементам здания (стенам, фермам и др.), устанавливают подвески для промежуточных креплений и крепят их к нижним поясам ферм, колоннам, перекрытиям, в щелях между уголками ферм или плит перекрытия. Затем заготовляют отрезки несущего троса, струны и оттяжки, оконцовывают их петлями с использованием гильз и обойм, собирают концевое крепление и заготовляют мерные отрезки проводов для линий электропроводки и питающей магистрали (по чертежам или эскизам замеров). После этого вводят провода в коробки, соединяют концы проводов в коробках или сжимах, крепят их к тросу (при незащищенных проводах) полосками через 0,3—0,35 м, перфорированной поливинилхлоридной лентой через 0,5 м, подвесками через 1,5 м с пластмассовыми клицами на два или четыре провода и обоймами для подвески светильников.
При применении защищенных проводов крепление полосками осуществляют через 0,5 м. Полоски — мягкие прокладки, должны выступать на 1,5—2 мм с обеих сторон троса. Далее прозванивают и маркируют провода. Если для тросовой проводки применяют специальные провода, то ввод и ответвление осуществляют сжимами У245 и У246 без разрезания фазных проводов.
Для прокладки заготовленных линий провода разматывают по полу с помощью специальных крестовин и поднимают их на высоту 1,3—1,5 м для выпрямления и подвески светильников. Далее провода поднимают на проектную высоту и закрепляют на анкерной конструкции один конец троса. Соединяют линию с ранее установленными промежуточными подвесками и оттяжками. Регулируют стрелу провеса и надевают трос на противоположное анкерное устройство. В местах соприкосновения оголенных участков троса и анкерного устройства их смазывают вазелином. Трос на конце линии заземляют в двух точках, присоединяя медные перемычки сечением 2,5 мм 2 к нулевому проводу или шине, соединенной с контуром заземления. Несущий трос в качестве заземляющего проводника использовать нельзя. Далее мегаомметром на напряжение до 1000 В измеряют сопротивление изоляции электропроводки. Оно должно быть не менее 0,5 МОм.
Электропроводки небронированными защищенными проводами и кабелями сечением до 16 мм 2 с резиновой и пластмассовой изоляцией прокладывают непосредственно по поверхности стен. Такие электропроводки крепят скобами, пряжками (рис. 4.8) или на полосах, лентах и струнах (рис. 4.9), что резко уменьшает трудоемкость дыропробивных работ.
Монтажные перфорированные полосы и ленты шириной 16 и толщиной 0,8 мм холодно- или горячекатаную ленту шириной 20—30 и толщиной 1—1,5 мм используют в качестве несущих конструкций. Ленты и полосы крепят непосредственно к основанию с расстоянием между точками крепления 0,8—1 м, а от конца полосы — не более 70 мм. Оцинкованную проволоку диаметром 3—4 мм, натянутую вплотную к основанию и закрепленную на концах натяжными устройствами, используют в качестве несущей струны.
Защищенные провода АПРФ (ПРФ, ПРФл) выпрямляют на верстаке или вручную.
Прокладка кабеля и проводов по стене с креплением к струнам:
а — подвеской У954; б — подвеской У957; в — полоской Лоскутова; г — лентой К226; д— полоской с пряжкой ПИ; е, и — полоской ПЛ с пряжкой; ж— полоской 20 х 1 с «усами»;
з, к — монтажной полоской К-200
Провода и кабели крепят металлическими или пластмассовыми бандажами на расстоянии 10—15 мм от мест изгиба трассы и 100 мм — от их ввода в ответвительные коробки. Расстояние между точками крепления 500 мм. Несущие полосы, ленты и струны заземляют так же, как и тросовые проводки. Металлические оболочки проводов АПРФ, ПРФ, ПРФл заземляют у питающих щитков или пунктов гибкой медной перемычкой, припаянной к металлической оболочке кабеля, провода.
Испытание трансформаторного масла
Трансформаторное масло играет роль изоляционной и охлаждающей среды. В выключателях оно служит для гашения дуги и для изоляции.
Правильная эксплуатация изоляционного масла обеспечивает надежную и безаварийную работу электрооборудования.
Свойства трансформаторного масла
В процессе эксплуатации отдельные качественные показатели и свойства трансформаторного масла меняются оно стареет. Старение трансформаторного масла в процессе эксплуатации определяется по изменению кислотного числа, по количеству образующегося в нем шлама, и по реакции водной вытяжки.
Кислотным числом трансформаторного масла называют количество миллиграмм калия необходимого для нейтрализации всех свободных кислых соединений, входящих в состав одного грамма масла. По величине кислотного числа судят о степени старения траснформаторного масла и о возможности оставления его в работе. При определенной степени окисления трансформаторного масла, изоляция обмоток трансформатора ухудшает свои качества и может разрушиться.
Шлам выпадает из масла в результате его старения и отлагается в каналах охлаждения, изоляции, на сердечниках трансформаторов и другого электрооборудования, ухудшая условия охлаждения данного оборудования. При этом изоляция этого электрооборудования быстрее стареет и разрушается, что может привести к авариям, например витковым замыканиям в обмотках трансформаторов.
Реакция водной вытяжки служит для определения присутствия растворенных в воде кислот и щелочей с помощью специальных индикаторов, которые способны менять цвет от наличия в трансформаторном масле кислот и щелочей. Эти кислоты, способствуя быстрому окислению трансформаторного масла, могут вызвать металла и изоляции в электрооборудовании или в аппарате.
Физические свойства трансформаторного масла
Физические свойства трансформаторного масла имеют важное значение для надежной работы электрооборудования. Изменение этих свойств говорит о неисправности оборудования и старения масла.
Удельный вес трансформаторного масла должен быть меньше удельного веса льда. Так как лед, который может образоваться зимой в отключенном трансформаторе, опустится на дно, и тем самым обеспечивая циркуляцию масла.
Температура вспышки трансформаторного масла должна быть относительно высокой для того, чтобы при значительных перегрузках трансформатора оно не могло воспламениться. В процессе работы температура вспышки масла в трансформаторах может резко понижаться в результате разложения масла под действием местных нагревов.
Электрические свойства трансформаторного масла
Диэлектрическая прочность трансформаторного масла обеспечивает надежную работу электрического оборудования. Диэлектрическая прочность масла со временем понижается. Для определения электрической прочности трансформаторное масло периодически испытывают на пробой с помощью маслопробойного аппарата.
Аппарат подключается к сети переменного напряжения величиной 220 В. Вторичное напряжение аппарата равно 60 кВ. С пределом регулирования от 0 до 60 кВ.
Для испытания на пробой трансформаторное масло заливают в фарфоровый сосуд, в котором смонтированы два дисковых электрода толщиной 8 мм и диаметров 25 мм. расстояние между дисками устанавливается 2,5 мм. сосуд наполняют маслом и устанавливают в маслопробойник. Маслу дают отстояться в течении 20 мин, чтобы из него вышел воздух. Далее плавно поднимают напряжение со скоростью 1 – 2 кВ в секунду до наступления пробоя.
При испытании трансформаторного масла необходимо сделать 6 пробоев с интервалом 10 минут. Первый пробой считают пробным и его результат не учитывается. За величину пробойного напряжения принимается среднеарифметическое из пяти последующих пробоев.
При неудовлетворительных результатах испытаний берется повторная проба, после чего дается окончательное заключение.
Свежее трансформаторное масло перед заливкой вновь вводимых трансформаторов, прибывающих без масла, обязательно должно пройти испытания на содержание механических примесей, содержание взвешенного угля, на прозрачность, на общую стабильность против окисления, кроме этого, должен быть определены тангенс угла диэлектрических потерь, температура вспышки, температура застывания, кинематическая вязкость, натровая проба в баллах, кислотное число и реакция водной вытяжки.
Из трансформаторов, прибывших без масла, до начала монтажа необходимо произвести отбор пробы остатков трансформаторного масла (со дна).
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: