Квантор что это такое в математике
Предикаты и кванторы
Вы будете перенаправлены на Автор24
Понятие предиката
Предикатом в программировании является функция, которая принимает один или более аргументов и возвращает значения булева типа.
Предикат называется тождественно-истинным, если на любом наборе аргументов он принимает истинное значение:
Предикат называется тождественно-ложным, если на любом наборе аргументов он принимает ложное значение:
Предикат называется выполнимым, если хотя бы на одном наборе аргументов он принимает истинное значение.
Примеры предикатов
Таким образом, предикатом является все то, что утверждается или отрицается о субъекте суждения.
Готовые работы на аналогичную тему
Операции над предикатами
Рассмотрим применение операций алгебры логики к предикатам.
Логические операции:
Над предикатами помимо логических операций можно выполнять квантовые операции: применение квантора всеобщности, квантора существования и т.д.
Кванторы
Чаще всего используют кванторы:
В математической логике существует понятие связывание или квантификация, которые обозначают приписывание квантора к формуле.
Примеры применения кванторов
С помощью квантора всеобщности можно записать следующие ложные высказывания:
который будет иметь вид:
Для записи истинных высказываний используем квантор существования:
Запись будет иметь вид:
Таким образом, предикат можно превратить в высказывание, если поставить перед предикатом квантор.
Операции над кванторами
Для построения отрицания высказываний, которые содержат кванторы, применяется правило отрицания кванторов:
Рассмотрим предложения и выделим среди них предикаты, указав область истинности каждого из них:
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата написания статьи: 07 04 2016
MT1102: Линейная алгебра (введение в математику)
В алгебре высказываний применяют логические знаки для записи различных утверждений. Однако нам не достаточно этих знаков для выражения мысли типа «Всякий элемент %%x%% из множества %%D%% обладает свойством %%P(x)%%».
Понятие кванторов
Введем новые логические знаки, обозначаемые %%\forall%%, %%\exists%% и %%\exists!%%. Знак %%\forall%% называется квантором всеобщности, знак %%\exists%% — квантором существования, а %%\exists!%% — квантором существования и единственности.
Пусть %%P(x)%% — одноместный предикат, определенный на множестве %%D%%.
Квантор всеобщности
Используя квантор всеобщности, можно составить следующее высказывание
Читается как: «для любого %%x%% выполняется %%P(x)%%»; «для всякого %%x
P(x)%%»; «для всякого %%x%% верно %%P(x)%%» и т.п.
Пусть %%P(x)%% предикат %%x^2 \geq 0%%, определенный на множестве действительных чисел %%D = \mathbb R %%. Тогда высказывание %%\forall x
P(x)%% имеет вид %%\forall x
x^2 \geq 0%%. Это истинное высказывание, так как для любого значения пременной %%x = a \in \mathbb R %% получаем истинное высказывание %%a^2 \geq 0%%. Однако, высказывание %%\forall x
x^2 > 0%% ложно, например, как при %%x = 0%% получаем ложное высказывание %%0 > 0%%.
Квантор существования
Используя квантор существования, можно составить следующее высказывание
Читается как: «существует %%x%% такой, что %%P(x)%%»; «существует %%x%% с условием %%P(x)%%» и т.п.
Квантор существования и единственности
Используя квантор существования и единственности, можно составить следующее высказывание
Читается как: «существует единственный %%x%% такой, что %%P(x)%%»; «существует единственный %%x%% с условием %%P(x)%%» и т.п.
Отрицание «кванторов»
Докажем первое из них. Пусть высказываине %%\overline<\forall x
P(x)>%% истинно. Тогда высказывание %%\forall x
P(x)%% ложно. Поэтому для некоторого %%x = a%% имеем %%P(a)%% ложно. Тогда %%\overline
%% истинно. Итак, для некоторого значения %%x = a
\overline
%% истинно. Поэтому высказывание %%\exists x
Аналогично доказывается второе утверждение.
Применение одного из кванторов «понижает» степень предиката на единицу. Из двуместного предиката получается одноместный предикат, а из одноместного — предикат %%0%% степени или высказывание.
Правила перестановки кванторов
P(x,y) \equiv \exists y
P(x,y) \equiv \forall y
Однако, разноименные кванторы переставлять местами нельзя. Рассмотрим двуместный предикат %%P(x, y): x + y = 0%%, определенный на множестве %%\mathbb R%%. Тогда высказывание %%\exists x
x + y = 0%% можно прочитать так: «существует %%x%%, которое в сумме с любым %%y%% равно 0». Это ложно высказывание.
Переставим разноименные кванторы местами и получим высказывание %%\forall y
x+ y = 0%%, которое можно прочитать так: «для любого %%y%% существует %%x%% такой, что их сумма равна 0». Это истинное высказывание. В итоге получили различные истинностные значения высказываний.
Для записи одноименных кванторов существуют следующие сокращения:
\forall y \equiv \forall x, y
\exists y \equiv \exists x, y. \end
Высказывания и предикаты. Кванторы
п.1. Высказывания
Например:
«Число 13 – нечётное» – высказывание, истинное
«2 + 2 = 5» – высказывание, ложное
«Мы живём в XXI веке» – высказывание, истинное
«Который час?» – не высказывание, т.к. вопросительное предложение
«Вася Пупкин – хороший человек» – не высказывание, т.к. неоднозначно. Но, если определить множество людей, которые оцениваются, и правила их оценки так, что предложение приобретёт однозначность, оно станет высказыванием.
Например:
A: натуральное число a делится на 2;
B: натуральное число a чётное.
Заметим, немного забегая наперёд, что в данном случае из А следует В, и из В следует А. Говорят, что эти высказывания эквивалентны: A ⇔ B.
п.2. Предикаты
Например:
P(x): x – объект с четырьмя ногами
При x = слон – предикат становится истинным высказыванием, P(«слон» )=1
При x = муравей – предикат становится ложным высказыванием, т.к. у муравья 6 ног, P(муравей)=0
При x = стол – предикат становится истинным высказыванием, P(«стол» )=1
При x = человек – предикат становится ложным высказыванием, т.к. у человека 2 ноги, P(человек)=0
Например:
P(x):|x| ≥ 0 – выполняется при любом значении x, это тождественный предикат.
\(\mathrm
>\)
Например:
P(x, y): x делится на y – двуместный предикат, который становится истинным высказыванием на парах значений переменных (15;5), (14;7), (16;4) и т.д.
P(a, b):(a + b) 2 = a 2 + 2ab + b 2 – является тождественным двуместным предикатом, т.к. выполняется для любых a и b.
п.3. Кванторы
«для любого…», «для всех…», «любой…»
Единственности и существования
«существует точно одно такое, что…», «существует и единственно…»
Существуют натуральные числа, которые делятся на 13
Существуют треугольники, у которых все углы равны
Например, равносторонний треугольник со стороной 1
Любое натуральное число делится на 5
Например x = 6 на 5 не делится
У любого выпуклого четырехугольника диагонали перпендикулярны
Например, у прямоугольника со сторонами 3 и 4 угол между диагоналями ≈ 74° ≠ 90°
Разность квадратов двух любых выражений равна произведению суммы и разности
Сумма углов любого треугольника равна 180°.
Третий класс задач (теорема) – самый сложный, т.к. требует не просто одного примера, а доказательства в общем случае.
п.4. Примеры
Пример 1. Запишите по два высказывания (A – истинное, B – ложное), относящиеся к
а) физике
A: Плотность равна отношению массы тела к его объему.
B: КПД механизма может быть больше 1.
б) химии
A: Гидроксид натрия – сильное основание.
B: Сульфат натрия – нерастворимая соль.
в) географии
A: На Земле шесть материков.
B: На Земле три океана.
Пример 3. С каким из кванторов предикат x 2 + 4 = 12 станет истинным высказыванием?
Если запишем (∀x) x 2 + 4 = 12 – это ложное высказывание, т.к., например, при x=0 оно не выполняется.
Если запишем (∃x) x 2 + 4 = 12 – это истинное высказывание, т.к., например, при \(\mathrm
Если запишем (∃x!) x 2 + 4 = 12 – это ложное высказывание, т.е. решений у данного уравнения не одно, а два: \(\mathrm
Ответ: квантор существования ∃.
КВАНТОР
Полезное
Смотреть что такое «КВАНТОР» в других словарях:
квантор — сущ., кол во синонимов: 1 • оператор (24) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
квантор — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN quantifier … Справочник технического переводчика
КВАНТОР — общее название для логических операций, к рые по предикату Р(х)строят высказывание, характеризующее область истинности предиката Р(х). В математич. логике наиболее употребительны квантор всеобщности и квантор существования Высказывание означает,… … Математическая энциклопедия
Квантор — (от лат. quantum сколько) символ, используемый для обозначения некоторых операций математической логики, одновременно логическая операция, дающая количественную характеристику области предметов, к которым относится выражение, получаемое в… … Начала современного естествознания
квантор — а, ч., лог. Логічний оператор, який переводить одну висловлювальну форму в іншу. Квантор існування … Український тлумачний словник
квантор — kvantorius statusas T sritis automatika atitikmenys: angl. quantifier vok. Quantor, m rus. квантор, m pranc. quantifier, m … Automatikos terminų žodynas
Квантор — (от лат. quantum сколько) логическая операция, дающая количественную характеристику области предметов, к которой относится выражение, получаемое в результате её применения. В обычном языке носителями таких характеристик служат слова типа… … Большая советская энциклопедия
квантор — кв антор, а … Русский орфографический словарь
Квантор
Ква́нтор — общее название для логических операций, ограничивающих область истинности какого-либо предиката и создающих выcказывание. Чаще всего упоминают:
В математической логике приписывание квантора к формуле называется связыванием или квантификацией.
В многозначных логиках также вводятся и другие кванторы, например, квантор плюральности (квантор Решера) (обозначается перевёрнутой M, читается «для большинства …»).
Содержание
Примеры
Обозначим предикат «x делится на 5». Используя квантор общности, можно формально записать следующие высказывания (конечно, ложные):
.
Следующие (уже истинные) высказывания используют квантор существования:
Их формальная запись:
.
Введение в понятие
Пусть на множестве простых чисел задан предикат
: «Простое число
нечётно». Подставим перед этим предикатом слово «любое». Получим ложное высказывание «любое простое число
нечётно» (это высказывание ложно, так как 2 — простое чётное число).
Подставив перед данным предикатом слово «существует», получим истинное выcказывание «Существует простое число
, являющееся нечётным» (например,
).
Таким образом, превратить предикат в высказывание можно, поставив перед предикатом слова («все», «существует» и другие), называемые в логике кванторами.
Кванторы в математической логике
(«При всех значениях (x) утверждение верно»).
(«Существует (x) при котором утверждение верно»).
Свободные и связанные переменные
Множество свободных переменных* формулы F определяется рекурсивно, следующим образом:
Связанное переименование, свободное переименование
Операции над кванторами
Правило отрицания кванторов — применяется для построения отрицаний высказываний, содержащих кванторы, и имеет вид:
История появления
Философы давно обращали внимание на логические операции, ограничивающие область истинности предиката, однако не выделяли их в отдельный класс операций. Так, Томас Гоббс считал, что они являются частями имен. [1]
Хотя кванторно-логические конструкции широко используются как в научной, так и в обыденной речи, их формализация произошла только в 1879 г., в книге Фреге «Исчисление понятий». Обозначения Фреге имели вид громоздких графических конструкций и не были приняты. Впоследствии было предложено множество более удачных символов, но общепринятыми стали обозначения для квантора существования (перевёрнутая первая буква англ. Exists — существует), предложенное Чарльзом Пирсом в 1885 г., и
для квантора общности (англ. All — все), образованное Герхардом Генценом в 1935 г. по аналогии с символом квантора существования. Термины «квантор», «квантификация» также предложил Пирс.
Литература
Ссылки
Примечания
Полезное
Смотреть что такое «Квантор» в других словарях:
КВАНТОР — логический оператор, с помощью которого высказывание о к. л. отдельном объекте преобразуется в высказывание о совокупности (множестве) таких объектов. В логике используется два основных К.: К. общности, «V», и К. существования, «Э». В… … Философская энциклопедия
квантор — сущ., кол во синонимов: 1 • оператор (24) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
квантор — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN quantifier … Справочник технического переводчика
КВАНТОР — общее название для логических операций, к рые по предикату Р(х)строят высказывание, характеризующее область истинности предиката Р(х). В математич. логике наиболее употребительны квантор всеобщности и квантор существования Высказывание означает,… … Математическая энциклопедия
Квантор — (от лат. quantum сколько) символ, используемый для обозначения некоторых операций математической логики, одновременно логическая операция, дающая количественную характеристику области предметов, к которым относится выражение, получаемое в… … Начала современного естествознания
квантор — а, ч., лог. Логічний оператор, який переводить одну висловлювальну форму в іншу. Квантор існування … Український тлумачний словник
квантор — kvantorius statusas T sritis automatika atitikmenys: angl. quantifier vok. Quantor, m rus. квантор, m pranc. quantifier, m … Automatikos terminų žodynas
Квантор — (от лат. quantum сколько) логическая операция, дающая количественную характеристику области предметов, к которой относится выражение, получаемое в результате её применения. В обычном языке носителями таких характеристик служат слова типа… … Большая советская энциклопедия
квантор — кв антор, а … Русский орфографический словарь