Квантовая запутанность что это

Квантовая запутанность без путаницы — что это такое

Введение

Появилось много популярных статей, где рассказывается о квантовой запутанности. Опыты с квантовой запутанностью весьма эффектны, но премиями не отмечены. Почему вот такие интересные для обывателя опыты не представляют интереса для учёных? Популярные статьи рассказывают об удивительных свойствах пар запутанных частиц — воздействие на одну приводит к мгновенному изменению состояния второй. И что же такое скрывается за термином «квантовая телепортация», о которой уже начали говорить, что она происходит со сверхсветовой скоростью. Давайте рассмотрим все это с точки зрения нормальной квантовой механики.

Что получается из квантовой механики

Квантовые частицы может находиться в двух типах состояний, согласно классическому учебнику Ландау и Лифшица — чистом и смешанном. Если частица не взаимодействует с другими квантовыми частицами, она описывается волновой функцией, зависящей только от её координат или импульсов — такое состояние называют чистым. В этом случае волновая функция подчиняется уравнению Шредингера. Возможен другой вариант — частица взаимодействует с другими квантовыми частицами. В этом случае волновая функция относится уже ко всей системе взаимодействующих частиц и зависит от всех их динамических переменных. Если мы интересуемся только одной частицей, то её состояние, как показал Ландау ещё 90 лет назад, можно описать матрицей или оператором плотности. Матрица плотности подчиняется уравнению, аналогичному уравнению Шредингера

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это

где Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это— матрица плотности, H — оператор Гамильтона, а скобки обозначают коммутатор.

Его вывел Ландау. Любые физические величины, относящиеся к данной частицы, можно выразить через матрицу плотности. Такое состояние называют смешанным. Если у нас есть система взаимодействующих частиц, то каждая из частиц находится в смешанном состоянии. Если частицы разлетелись на большие расстояния, и взаимодействие исчезло, их состояние все равно останется смешанным. Если же каждая из нескольких частиц находятся в чистом состоянии, то волновая функция такой системы есть произведение волновых функций каждой из частиц (если частицы различны. Для одинаковых частиц, бозонов или фермионов, надо составить симметричную или антисимметричную комбинацию см. [1], но об этом позже. Тождественность частиц, фермионы и бозоны – это уже релятивистская квантовая теория.

Запутанным состоянием пары частиц называется такое состояние, в котором имеется постоянная корреляция между физическими величинами, относящимися к разным частицам. Простой и наиболее часто распространенный пример — сохраняется некая суммарная физическая величина, например, полный спин или момент импульса пары. Пара частиц при этом находится в чистом состоянии, но каждая из частиц — в смешанном. Может показаться, что изменение состояния одной частицы сразу скажется на состоянии другой частицы. Даже если они разлетелись далеко и не взаимодействуют, Именно это высказывается в популярных статьях. Это явление уже окрестили квантовой телепортацией, Некоторые малограмотные журналисты даже утверждают, что изменение происходит мгновенно, то есть распространяется быстрее скорости света.

Рассмотрим это с точки зрения квантовой механики, Во-первых, любое воздействие или измерение, меняющее спин или момент импульса только одной частицы, сразу же нарушает закон сохранения суммарной характеристики. Соответствующий оператор не может коммутировать с полным спином или полным моментом импульса. Таким образом, нарушается первоначальная запутанность состояния пары частиц. Спин или момент второй частицы уже нельзя однозначно связать с таковым для первой. Можно рассмотреть эту проблему с другой стороны. После того, как взаимодействие между частицами исчезло, эволюция матрицы плотности каждый из частиц описывается своим уравнением, в которое динамические переменные другой частицы не входят. Поэтому воздействие на одну частицу не будет менять матрицу плотности другой.

Имеется даже теорема Эберхарда [2], которая утверждает, что взаимное влияние двух частиц невозможно обнаружить измерениями. Пусть имеется квантовая система, которая описывается матрицей плотности. И пусть эта система состоит из двух подсистем A и B. Теорема Эберхарда гласит, что никакое измерение наблюдаемых, связанных только с подсистемой A, не влияет на результат измерения любых наблюдаемых, которые связаны только с подсистемой B. Впрочем, доказательство теоремы использует гипотезу редукции волновой функции, которая не доказана ни теоретически, ни экспериментально. Но все эти рассуждения сделаны в рамках нерелятивистской квантовой механики и относятся к различным, не тождественным частицам.

Эти рассуждения не работают в релятивистской теории в случае пары одинаковых частиц. Еще раз напомню, что тождественность или неразличимость частиц – из релятивистской квантовой механики, где число частиц не сохраняется. Однако для медленных частиц мы можем использовать более простой аппарат нерелятивистской квантовой механики, просто учитывая неразличимость частиц. Тогда волновая функция пары должна быть симметричной (для бозонов) или антисимметричной (для фермионов) по отношению к перестановке частиц. Такое требование возникает в релятивистской теории, независимо от скоростей частиц. Именно это требование приводит к дальнодействующим корреляциям пары одинаковых частиц. В принципе протон с электроном тоже могут находиться в запутанном состоянии. Однако если они разойдутся на несколько десятков ангстрем, то взаимодействие с электромагнитными полями и другими частицами разрушит это состояние. Обменное взаимодействие (так называют это явление) действует на макроскопических расстояниях, как показывают эксперименты. Пара частиц, даже разойдясь на метры, остается неразличимой. Если вы проводите измерение, то вы точно не знаете, к какой частице относится измеряемая величина. Вы проводите измерения с парой частиц одновременно. Поэтому все эффектные эксперименты проводились именно с одинаковыми частицами – электронами и фотонами. Строго говоря, это не совсем то запутанное состояние, которое рассматривают в рамках нерелятивистской квантовой механики, но что-то похожее.

Рассмотрим простейший случай – пара одинаковых невзаимодействующих частиц. Если скорости малы, мы можем пользоваться нерелятивистской квантовой механикой с учетом симметрии волновой функции по отношению к перестановке частиц. Пусть волновая функция первой частицы Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это, второй частицы — Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это, где Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что этои Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это— динамические переменные первой и второй частиц, в простейшем случае – просто координаты. Тогда волновая функция пары

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это

Знаки + и – относятся к бозонам и фермионам. Предположим, что частицы находятся далеко друг от друга. Тогда Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что этолокализованы в удаленных областях 1 и 2 соответственно, то есть вне этих областей они малы. Попробуем вычислить среднее значение какой-нибудь переменной первой частицы, например, координаты. Для простоты можно представить, что в волновые функции входят только координаты. Окажется, что среднее значение координат частицы 1 лежит МЕЖДУ областями 1 и 2, причем оно совпадает со средним значением для частицы 2. Это на самом деле естественно – частицы неразличимы, мы не можем знать, у какой частицы измеряются координаты. Вообще все средние значения у частиц 1 и 2 будут одинаковы. Это значит, что, перемещая область локализации частицы 1 (например, частица локализована внутри дефекта кристаллической решетки, и мы двигаем весь кристалл), мы воздействуем на частицу 2, хотя частицы не взаимодействуют в обычном смысле – через электромагнитное поле, например. Это простой пример релятивистской запутанности.

Никакой мгновенной передачи информации из-за этих корреляций между двумя частицами не происходит. Аппарат релятивистской квантовой теории изначально построен так, что события, находящиеся в пространстве-времени по разные стороны светового конуса, не могут влиять друг на друга. Проще говоря, никакой сигнал, никакое воздействие или возмущение не могут распространяться быстрее света. Обе частицы на самом деле являются состоянием одного поля, например, электрон-позитронного. Воздействуя на поле в одной точке (на частицу 1), мы создаем возмущение, которое распространяется подобно волнам на воде. В нерелятивистской квантовой механике скорость света считается бесконечно большой, оттого возникает иллюзия мгновенного изменения.

Ситуация, когда частицы, разнесенные на большие расстояния, остаются связанными в паре, кажется парадоксальной из-за классических представлений о частицах. Надо помнить, что реально существуют не частицы, а поля. То, что мы представляем, как частицы – просто состояния этих полей. Классическое представление о частицах совершенно непригодно в микромире. Сразу же возникают вопросы о размерах, форме, материале и структуре элементарных частиц. На самом деле ситуации, парадоксальные для классического мышления, возникают и с одной частицей. Например, в опыте Штерна-Герлаха атом водорода пролетает через неоднородное магнитное поле, направленное перпендикулярно скорости. Спином ядра можно пренебречь из-за малости ядерного магнетона, пусть изначально спин электрона направлен вдоль скорости.

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это

Эволюцию волновой функции атома нетрудно рассчитать. Первоначальный локализованный волновой пакет расщепляется на два одинаковых, летящих симметрично под углом к первоначальному направлению. То есть атом, тяжелая частица, обычно рассматриваемая, как классическая с классической траекторией, расщепился на два волновых пакета, которые могут разлететься на вполне макроскопические расстояния. Заодно замечу – из расчета следует, что даже идеальный эксперимент Штерна-Герлаха не в состоянии измерить спин частицы.

Если детектор связывает атом водорода, например, химически, то «половинки» — два разлетевшихся волновых пакета, собираются в один. Как происходит такая локализация размазанной частицы – отдельно существующая теория, в которой я не разбираюсь. Желающие могут найти обширную литературу по этому вопросу.

Заключение

Возникает вопрос – в чем смысл многочисленных опытов по демонстрации корреляций между частицами на больших расстояниях? Кроме подтверждения квантовой механики, в которой давно уже ни один нормальный физик не сомневается, это эффектная демонстрация, производящая впечатление на публику и дилетантов-чиновников, выделяющих средства на науку (например, разработку квантовых линий связи спонсирует Газпромбанк). Для физики эти дорогостоящие демонстрации ничего не дают, хотя позволяют развивать технику эксперимента.

Источник

Квантовая запутанность для чайников

В обсуждениях недавней темы я заметил несколько сообщений, от людей, которые думают, что «физики договорились» о существовании суперпозиции. Что это просто удобная математическая/физическая модель, не имеющая под собой реальных экспериментов, доказывающих нахождение квантов в суперпозиции. Что кванты, на самом деле находятся всегда в конкретных позициях, а проведение эксперимента, лишь обнаруживает эти позиции. Некоторое время это было спором и у физиков, пока в 1964 году Джон Стюарт Белл не сформулировал свою известную теорему Белла(неравенства Белла), которая в последствии была улучшена другими учеными и неоднократно проверена экспериментально. Для желающих ознакомиться непосредственно с его теоремой, я советую пропустить эту статью, и сразу перейти к прочтению книг, ссылки на которые даны ниже, и в комментариях. Для понимания ее основ не требуются глубокие познания физики и математики. Для тех же, кому даже статья в Википедии кажется сложной для понимания, я приведу довольно упрощенную аналогию.

Для простоты, скажем, у кванта есть некоторые 3 характеристики: A, B и C, которые могут принимать значения 1 или 0. Возьмем два запутанных кванта, таких, что:
1) Если при измерении у первого кванта одной из характеристик мы получаем 1, то у другого кванта, эта же характеристика при измерении будет равна 0.
2) Если мы выбираем для сравнения характеристику случайным образом, то в половине случаев мы получаем одинаковые значения, а в половине — разные. (!)

Сперва кажется что выполнить эти два условия очень легко, написав простенькую программу мы можем смоделировать эту ситуацию. НО! Давайте просто проверим это статистически, программно, кто как хочет и может, пусть проведет свое собственное исследование: Поставит такой эксперимент: Создаст N заранее определенных пар троек значений: (1,0,1)-(0,1,0); (1,1,0)-(0,0,1)… итп, далее построит модель, которая будет удовлетворять обоим вышеуказанным пунктам.

Окажется, что это не только непросто сделать, но и в принципе невозможно. Если мы с такими исходными данными будем измерять одинаковые параметры, мы будем получать противоположные значения. Что понятно и согласуется с пунктом 1. Но вот если, мы будем измерять случайные параметры, то противоположные значения у нас будут появляться в более чем 50% случаев. Что противоречит пункту 2.

А именно, в нашем эксперименте, вероятность обнаружения противоположных значений будет лежать в диапазоне [5/9; 2/3] (0.555;0.667). В самой лучшей модели мы не сможем добиться получения разных результатов в менее чем 55,5% случаев. В то время как в реальности можно поставить подобный эксперимент с квантами, в котором она останется равной 1/2.

Объясняется это очень просто: При наличии «заранее определенных квантов» мы всегда имеем «перевес» его значений в одну сторону. Там либо две единицы, и один ноль, либо два нуля и единица, либо вообще все 3 значения равны или единице или нулю.

Именно этот мысленный эксперимент показал мне, что в мире квантов нет места детерминированным параметрам. Заставил изучить тему подробнее и найти в ней очень много необычного интересного и захватывающего.

P.S. Очень хорошо данный эксперимент был описан в книге Ричарда Фейнмана (надеюсь сообщество подскажет в какой именно, я немного запутался)
P.P.S. Ан-нет, это Брайан Грин «Ткань космоса. Пространство, время и текстура реальности». Вот как раз этот момент. Может быть так кому-то станет понятнее.

Upd1
Пояснение с математической стороны:
Например 1 квант имеет такие характеристики (1,1,0), а спутанный с ним (0,0,1). Мы, случайно выбираем и измеряем характеристику первого кванта и случайно выбираем и измеряем характеристику второго кванта. При большом числе экспериментов у нас будут результаты всех возможных комбинаций: A1A2,A1B2,A1C2,B1A2,B1B2,B1C2,C1A2,C1B2,C1C2 (9 штук) примерно с одинаковой вероятностью появления каждой.
Теперь, если мы выпишем с нашей пары квантов все комбинации мы получим:
10,10,11,10,10,11,00,00,01. 5 пар разные значения. 4 пары одинаковые. Таким образом мы для подобных квантов будем иметь перевес 5:4 в пользу разных пар.
Для запутанных пар (0,0,0)-(1,1,1) — мы всегда будем получать разные пары.
Имеем 8 вариантов распределения трех двоичных параметров: 000,001,010,100,011,101,110,111.
2/8 из них с тремя одинаковыми значениями, значит запутанная пара всегда будет с противоположными значениями (p=1).
6/8 из них с двумя одинаковыми и одним противоположным значением. 9 различных комбинаций с такими запутанными тройками. Из них 5 — это разные значения, 4-одинаковые. (p=5/9)
Итого, общая вероятность пар с разными значениями: 5/9*6/8+1*2/8=2/3 > 1/2

Upd2
Хочу выразить отдельное спасибо пользователю Shkaff, за указание ошибок в первоначальном варианте статьи, и за полезные ссылки в его комментарии. Статью пришлось немного изменить, но я постарался сохранить первоначальную идею.

Источник

Спросите Итана: чего такого пугающего есть в квантовой запутанности?

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Создав два запутанных фотона в существующей системе, а затем разделив их на большое расстояние, мы сможем получить информацию о состоянии одного из них, измерив состояние другого

Квантовая физика полна загадок, печально известных тем, что они противоречат нашей интуиции. Частицы, кажется, знают, смотрите ли вы на них, или нет, и демонстрируют различное поведение, в зависимости от того, наблюдаете вы за ними, или нет, проходя через двойную щель. Измерение одной величины, допустим, положения частицы, создаёт присущую ей неопределённость в дополняющей величине, к примеру, импульсе. А если вы измерите её спин в вертикальном направлении, то уничтожите информацию о спине в горизонтальном направлении. Но самым «пугающим» из всех квантовых явлений будет квантовая запутанность, когда одна частица, кажется, мгновенно «узнаёт», измерили ли спутанного с ней партнёра, даже если это проделают на другом конце Вселенной. На этой неделе мы рассмотрим вопрос читателя, заинтригованного тем, почему это вообще считается загадкой.

С точки зрения фотонов они прошли нулевое расстояние за нулевое время. Так что в этом пугающего? Пока один из них не измерят, они находятся в одном и том же месте и в одно и то же время (если верить им), так что нельзя назвать загадкой то, что они координируют свои состояния.

Разумные рассуждения: замедление времени для быстро двигающихся частиц означает, что они могут координировать свои состояния с любой скоростью. Но эту загадку не так просто решить.

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Схема третьего эксперимента Аспе по проверке квантовой нелокальности. Запутанные фотоны из источника отправляются к двум переключателям, направляющим их к поляризующим датчикам. Переключатели очень быстро переключают свои состояния, меняя настройки детектора во время полёта фотонов.

Очень сложно визуализировать эти результаты, но в квантовой механике есть прекрасная аналогия: прохождение частицы через двойную щель.

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Если пропускать электроны, фотоны или любые другие частицы через двойную щель, возникает картина интерференции. Но это происходит, только если вы не проверяете, через какую щель они проходят!

Если пропустить частицу через двойную щель – то есть, экран с двумя узкими щелями, находящимися очень близко друг от друга – и она пройдёт сквозь них, вместо того, чтобы быть задержанной экраном, вы легко можете определить, где она окажется с другой стороны. Если вы будете запускать множество частиц по одной через двойную зель, вы обнаружите, что прошедшие через щели частицы формируют интерференционную картину. Иначе говоря, каждая частица ведёт себя не так, будто она прошла через одну или другую щель; она ведёт себя так, будто она прошла через обе щели сразу, проинтерферировала сама с собой на манер волны, и продолжила движение.

Но этот рисунок, демонстрирующий странную квантовомеханическую природу всех частиц Вселенной, появляется, только если вы не определяете, через какую щель проходит частица.

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Если вы определяете, через какую щель проходит частица, оставив весь остальной эксперимент без изменений, вы вообще не получаете интерференционную картину.

Если вы вместо этого вы измеряете частицу на проходе через одну из щелей – это можно сделать через установку счётчика – вы не получите интерференционную картину. Вы получите кучу частиц, соответствующую прохождению через щель 1, и кучу для щели 2.

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Волновой рисунок электронов, проходящих через двойную щель по одному. Если вы измерите, через какую щель прошёл электрон, вы уничтожаете квантовую интерференционную картину. Отметим, что для создания такой картины требуется больше одного электрона.

Иначе говоря, проводя измерение, определяющее избранный частицей путь, вы меняете результат этого выбора! Для одной частицы вы сможете только определить вероятность прохождения через щель 1, щель 2, или интерференции с самой собой. Для открытия реального состояния вашего эксперимента потребуется больше статистики.

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Квантовомеханический тест Белла для частиц с полуцелым спином

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Эксперимент квантового стирания, в котором две запутанных частицы разделяются и измеряются. Никакие действия с одной из частиц в точке назначения не влияют на другую.

«Пугающим» становится тот факт, что в физике ничто другое не происходит мгновенно. Самая большая скорость передачи любого сигнала будет равна с, скорости света в вакууме. Но эти две запутанные частицы можно разделить на метры, километры, астрономические единицы или световые года, и измерение одной из них мгновенно определяет состояние другой. Неважно, двигаются ли запутанные частицы со скоростью света или нет, обладают они массой или нет, много ли у них энергии, и изолируете ли вы их друг от друга, чтобы они не отправляли друг другу фотоны. Нет никаких лазеек, позволяющих скорости взаимодействия в любой системе отсчёта как-то это компенсировать. В конце 1990-х эксперименты с разделением и одновременным измерением этих частиц определили, что если какая-либо информация и передаётся между ними, то она двигается быстрее скорости света в 10000 раз.

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Квантовая телепортация, которую часто путают с путешествием быстрее света. В реальности информация быстрее скорости света не передаётся.

Но этого не может быть! В реальности никакой информации не передаётся. Нельзя провести измерение частицы в одном месте и использовать это для передачи чего-либо частице, расположенной очень далеко. Было разработано множество хитроумных схем, задуманных так, чтобы, используя это свойство, передавать информацию быстрее света, но в 1993 году доказали, что этот механизм не допустит передачи информации. Тому есть простое объяснение:

• Если вы измерите «каково состояние имеющейся у меня частицы», вы узнаете состояние другой частицы, но с этой информацией нельзя ничего сделать до тех пор, пока либо вы доберётесь до другой частицы, либо она доберётся до нас, и передача сообщений должна будет идти со скоростью света или медленнее.
• Если же вы заставите имеющуюся у вас частицу принять определённое состояние, это не изменит состояние запутанной частицы. Наоборот, это разрушит запутанность, так что вы не узнаете ничего о второй частице.

[Итан немного не до конца раскрыл суть проблемы. Всё вышеописанное может и не удивить вас, если представить себе аналогию с перчатками. Некто отправил вам одну перчатку из пары, а вашему другу – другую. И вы, открыв свою посылку, мгновенно узнаёте не только то, какую перчатку, левую или правую, вы получили, но и то, какую получил ваш друг. Однако в случае с запутанными частицами состояние «перчаток» изначально не определено. И мы его не просто не знаем или не умеем определять – оно на самом деле определяется случайным образом, и именно в момент измерения одной из «перчаток». Тогда другая «перчатка» мгновенно принимает противоположное состояние. Именно это Эйнштейн и называл «пугающим дальнодействием» / прим. перев.]

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Если две частицы запутаны, свойства их волновых функций дополняют друг друга, и измерение одной из них определяет свойства другой. Но является ли волновая функция абстрактным математическим описанием, или же она лежит в основе более глубокой истины Вселенной и детерминистской, фундаментальной реальности – вопрос открытый.

Это философская проблема для реалистов. Это значит, что волновая функция частицы – или запутанная волновая функция нескольких частиц – представляет собой реальный, физический объект, существующий и эволюционирующий во Вселенной, но для этого требуется большое количество неудобных предположений. Нужно предположить, что существует бесконечное число возможных реальностей, и что мы живём только в одной из них, хотя никаких свидетельств о существовании других нет. Если вы инструменталист (как автор; это проще и практичнее), у вас нет этой философской проблемы. Вы просто принимаете, как данность, что волновая функция – это инструмент для расчётов.

Квантовая запутанность что это. Смотреть фото Квантовая запутанность что это. Смотреть картинку Квантовая запутанность что это. Картинка про Квантовая запутанность что это. Фото Квантовая запутанность что это
Эйнштейн был убеждённым реалистом в вопросах квантовой механики, и это предубеждение он унёс с собой в могилу. Никаких свидетельств в поддержку его интерпретации квантовой механики обнаружено не было, хотя у неё до сих пор есть много приверженцев

Стивен Вайнберг, нобелевский лауреат, сооснователь Стандартной Модели и гениальный во многих областях физик-теоретик, недавно осудил подход инструментализма в журнале Science News, описывая его так:

Это так ужасно, представлять, что у нас нет знаний по поводу всего, что существует – мы можем сказать, что произошло, только проведя измерение.

Но вне зависимости от ваших философских увиливаний, квантовая механика работает, и волновая функция, запутывающая частицы, позволяет разрушать эту запутанность, даже на космических расстояниях. Это единственный мгновенный процесс во Вселенной, известный нам, и поэтому он действительно стоит особняком!

Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *