Квантум что это такое в физике
Данная статья рассказывает о том, что «квант» – это понятие физики элементарных частиц. Здесь дается определение этой величины, показывается ее важность и приводится краткая история ее открытия.
Математика и физика
Две самые страшные школьные дисциплины для учеников с гуманитарным складом ума однажды объединились, чтобы породить новый этап в изучении окружающего мира. Началось все с того, что Макс Планк, выводя формулу распределения излучения абсолютно черного тела, ввел понятие «квант». Значение слова буквально такое: наименьшая порция чего-либо, например, энергии, поля, момента инерции.
Причем применимо это понятие к микромиру: может быть квант света и гравитационного поля, но не может быть кванта массы или дождя. Чтобы читателю было яснее, приведем пример. Если бы все возможные состояния электрона были целой коровой, то квант – это наименьшая порция мяса, с помощью которой можно насытиться, то есть один стейк. Кстати, в известном фильме о Джеймсе Бонде под квантом милосердия наверняка подразумевается то, что даже у самого черствого человека есть хоть немного сострадания в душе.
Борьба за квантовую физику
Поначалу Макс Планк действовал в рамках прежних представлений о физике. Он ввел в уравнение квант, значение которого в его глазах заключалось только в удобстве математического выражения. Таким образом, получается, что он открыл это понятие почти случайно, не стремясь совершить прорыв.
Вообще, он был добросовестным исследователем, усердно трудился над каждой темой и доводил дело до конца. Именно упорство и настойчивость позволили ему перевернуть физику. Не было никаких гениальных прозрений и внезапных идей. Возможно, поэтому еще долгое время он отрицал важность своего открытия и пытался как-то «приладить», примирить новое понятие со старым подходом к физике. Целая плеяда ученых, которые появились благодаря введению кванта, не смогли убедить его в фундаментальном значении одного-единственного предположения для будущего науки.
Значение для науки
Прежде всего, квант – это основа для понимания природы света. Ученые еще в семнадцатом веке довольно точно измерили скорость солнечных лучей, но объяснить их появление или поглощение поверхностями были не в силах. Выяснилось, что энергия электромагнитных волн с одинаковым приращением фазы по времени может принимать только значения, кратные E= (N+1/2) ħω. Поясним:
Приведенная выше формула обозначает, что энергия излучения ħω квантуется, то есть представляет собой набор конечных пакетов или фотонов.
Квант и материя
Объяснив природу света, люди поняли, что квант – это не только математическая шутка, но и огромные возможности. Позже ученые выяснили, почему электроны в атомах могут находиться только на определенных орбитах. Это потребовало введения принципа корпускулярно-волнового дуализма для элементарных частиц.
Переход электрона между двумя орбиталями в атоме происходит всегда рывком. Это приводит к процессам, благодаря которым испускается или поглощается световой квант. Что значит этот факт для науки, поясним чуть ниже. В каждом типе атомов набор квантов перехода уникален. То есть набор энергий, необходимый для возбуждения электронов золота, не подходит платине. Это дает возможность определить, какой именно переход был совершен, и понять, какой тип атома изучается: водород или аргон, алюминий или магний.
На этом основании стоит самый мощный инструмент изучения и покорения материи – спектроскопия. Сферы применения анализа спектров весьма обширны, вот некоторые из них:
Читатель и сам легко представит, что использовать такой метод можно во всех сферах человеческой деятельности.
Типы квантов
Помимо уже описанного фотона, бывают и другие типы квантов:
Большой адронный коллайдер, который был построен в 2012 году, доказал: в его недрах родился новый квант, бозон Хиггса. Таким образом, физики показали, почему глюоны и фотоны не обладают массой покоя.
Лазер как следствие приручения квантов света
Поняв, как получаются фотоны, ученые смогли «приручить» их. В результате появился лазер – источник монохроматических электромагнитных волн. При достаточно простых принципах, которые лежат в основании одновременной генерации фотонов одной длины волны (монохроматических), и простом строении самого устройства, возникали большие технические сложности.
Первой задачей было найти материал, в котором существовала бы инверсная заселенность электронов. Вторая задача состояла в том, чтобы создать два зеркала на торцах рабочего кристалла. Но обе они давно решены, причем понимание того, что такое квант, – это первый шаг к получению таких сложных устройств.
В современном мире лазер используется повсеместно. Его применяют как для забавы (лазерная указка), так и для серьезных целей (термоядерная реакция).
Квант (физика)
Квант (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения — и последнее называют квантом. Например, энергия монохроматического электромагнитного излучения угловой частоты может принимать значения
, где
— редуцированная постоянная Планка, а
— целое число. В этом случае
имеет смысл энергии кванта излучения (иными словами, фотона), а
— смысл числа́ этих квантов (фотонов). Именно в этом смысле термин квант был впервые введен Максом Планком в его классической работе 1900 года — первой работе по квантовой теории, заложившей ее основу.
Вокруг идеи квантования с начала 1900-х годов развилась полностью новая физическая концепция, обычно называемая квантовой физикой. Ныне прилагательное «квантовый» используется в названии ряда областей физики (квантовая механика, квантовая теория поля, квантовая оптика и т. д.). Широко применяется термин квантование, означающий построение квантовой теории некоторой системы или переход от её классического описания к квантовому. Тот же термин употребляется для обозначения ситуации, в которой физическая величина может принимать только дискретные значения — например, говорят, что энергия электрона в атоме «квантуется». Сам же термин «квант» в настоящее время имеет в физике довольно ограниченное применение. Иногда его употребляют для обозначения частиц или квазичастиц, соотвествующих бозонным полям взаимодействия (фотон — квант электромагнитного поля, фонон — квант поля звуковых волн в кристалле, гравитон — гипотетический квант гравитационного поля и т. д.), также о таких частицах говорят как о «квантах возбуждения» или просто «возбуждениях» соответствующих полей.
Кроме того, по традиции «квантом действия» иногда называют постоянную Планка. В современном понимании это название может иметь тот смысл, что постоянная Планка является естественной квантовой единицей измерения действия и других физических величин такой же размерности (например, момента импульса).
Некоторые кванты
Кванты некоторыех полей имеют специальные названия:
Квантум что это такое в физике
Раньше считали, что мельчайший размер имеет атом, но нынче ученые докопались аж до кварков и суперструн. Но вопрос определения мельчайшего расстояния оставим физикам – рано или поздно нам предъявят эталон. Факт в том, что наш опыт подтверждает, что деление отрезка в реальности не бесконечно.
Эти рассуждения близки известному парадоксу Ахиллеса и черепахи. Древние тоже задумывались о бесконечности деления пространства. Так то!
А вот и нет. Выяснилось, что существует конечный кусочек энергии. Самая маленькая порция энергии, меньше которой не существует. Как и в случае с расстоянием, передачу энергии можно делить на кусочки (или пакеты, если вы вэб-программист, и вам так понятнее). Самый крошечный кусочек энергии и называют квантом.
Собственно на этом можно и закончить. Но ведь вам наверняка интересно, как это было обнаружено, да и почему из такого пустяка родилась целая наука – квантовая физика.
Эта гипотетическая духовка после нагревания, разумеется, тоже начнет излучать тепло. Физики стали считать, сколько тепла (энергии) будет излучать такая духовка. И неожиданно у них по тогдашним, казалось бы логичным, формулам умника Максвелла выходила бесконечная энергия. Это была засада – практика показывала, что в реальности подобные бесконечности не наблюдается вообще нигде и тем более в духовках. И вот на этой ерунде вся классическая физика пошла лесом.
Первым что-то путное высказал Макс Планк – дедушка квантовой физики. Он чисто по-студенчески подогнал результат под задачу, придумав формулу, из которой следовало, что энергия излучается порциями. То есть каждая электромагнитная волна несет в себе определенное количество энергии, пропорциональное частоте этой волны. Чем больше частота волны, тем больше энергии несет в себе один квант. Коэффицент пропорциональности назвали постоянной Планка, которая впоследствии оказалась не просто какой-то случайной цифрой, а фундаментальной физической величиной.
Хорошая аналогия: когда мы играем на скрипке, и плавно увеличиваем громкость, то на самом деле громкость растет не непрерывно, а скачками, но такими маленькими, что мы не замечаем этого.
Явление фотоэффекта вообще никто не мог объяснить в рамках классической физики. На картинке, походу, нарисован прибор для изучения фотоэффекта.
Никто не мог, кроме Эйнштейна. Чтобы объяснить, почему цвет падающего луча света, а не его энергия, определяет скорость выбиваемых электронов, Эйнштейн решил перенести идейки о порциях энергии Планка на световую волну. Ведь озадаченный Планк применял свою теорию только к тепловым излучениям.
Для начала Эйнштейн впервые озвучил идею, что свет можно и нужно рассматривать не как волну, а как частицу (впоследствии ее назовут фотоном, а Эйнштейн называл ее световым квантом). Для любознательных: обычная лампочка в 100 Ватт излучает в секунду примерно сто миллиардов миллиардов фотонов (это 10 в 20 степени).
И после этого мир уже никогда не был прежним. Физики столкнулись с невероятным для макромира явлением, что материя может быть одновременно и частицей и волной, что энергия не делится бесконечно, а очень даже кратна некоему значению (постоянной Планка), что эти самые кванты обладают такими свойствами, что расскажи кому в приличной компании – не поверят и вызовут санитаров.
Эйнштейн был злостным противником квантовой физики. Он до самой смерти держал оборону, считая, что квантовые явления можно как-то нормально объяснить. Но разные там Нильсы Боры, Гейзенберги, Ландау и прочие открывали все новые и новые свойства квантов. А в 50-е годы, уже после смерти Эйнштейна квантовые штучки были подтверждены экспериментально и окончательно.
Comments
>Энергия же выбитых из пластинки электронов растет, если увеличить длину волны (частоту) света
Ошибочка в тексте. Увеличиваем частоту, а длину волны УМЕНЬШАЕМ!
> Выяснилось, что существует конечный кусочек энергии. Самая маленькая порция энергии, меньше которой не существует.
Это упрощение для «гуманитариев», или косячок? 🙂
Формула ниже по тексту, та, что в синей рамочке: порция и частота жестко связаны, да. Но никакого ограничения по минимум на порцию нет.
— Как сказать. В общем-то, первоначально термин «элементарная частица» обозначал, вернее, подразумевал под собой нечто абсолютно элементарное, как говорят физики, первокирпичик материи. Однако после того, как в 1960-х годах были открыты сотни адронов с похожими свойствами, которые обладают внутренними степенями свободы и состоят из кварков, был придуман новый термин «фундаментальные частицы», обозначавший уже самые элементарные частицы, такие как лептоны, кварки и другие, якобы бесструктурные частицы, которые «невозможно расщепить на составные части». Пожалуй, я не буду вдаваться в тонкости физики, вряд ли вам это будет интересно. Но, так сказать, для общего понимания приведу простой пример. Давайте возьмём электрон. Надеюсь, всё знают, что это такое?
— А как же! Конечно знаем, — хвастливо заявил Женька. — Это такие маленькие-маленькие отрицательно заряжённые частицы, которые носятся вокруг атома, прямо как блохи по собаке.
Все рассмеялись. Сэнсэй махнул рукой, мол, ладно, хоть такое понимание присутствует в этой буйной головушке, и то хорошо, и продолжил:
— Так вот, электрон был первой элементарной частицей, которую в 1897 году открыл английский физик по фамилии Томсон. А вот первой открытой античастицей был позитрон. Это частица с массой электрона, только с положительным электрическим зарядом. Этот позитрон был обнаружен американским физиком Андерсоном в 1932 году. Ну, о том, что электронное строение атома определяет его свойства, в том числе и важную для химии способность атома образовывать химические соединения, я надеюсь, вы тоже знаете.
— Да! — гордо подтвердил Женька. — И собаки и блохи состоят из атомов, окружённых электронами. Количество электронов определяет кто из них собака, а кто блоха!
Под смех ребят Сэнсэй одобрительно кивнул:
— Пример, конечно, грубый, но по своей сути указывает на важность электронов. Итак, электроны, по мнению современных физиков, относятся к фундаментальным, то есть бесструктурным частицам. Но на самом деле электрон состоит из 13 частиц По или гравитонов. Так как гравитон чисто гипотетическая частица и экспериментально не доказана, но теоретически вычислена, и наиболее подходящая для обозначения частички По, то чисто гипотетически можно с уверенностью утверждать, что из всех «фундаментальных» частиц истинно таковым является только гравитон. Остальные состоят из 3-5-7-12-33-70 и так далее частичек По. Причём многие «фундаментальные» частички, состоящие из одного и того же числа частичек По, но имеющие разные формы и знаки заряда, соответственно играют и разные роли в этом театре материи. Примером тому служит тот же электрон и позитрон. Что в одном 13 частичек По, что в другом, что один имеет спиральную форму, что другой. Разница всего лишь в том, что один имеет отрицательный внешний заряд, «левую» спираль и положительный внутренний потенциал, а другой всё то же, только наоборот — положительный внешний заряд, «правую спираль» и отрицательный внутренний потенциал.
Николай Андреевич, внимательно выслушав Сэнсэя, тактично заметил:
— Я, конечно, не физик, спорить не буду. Но насколько я помню, электрон действительно имеет отрицательный заряд, а позитрон — положительный. О спиральной форме тоже ничего не могу сказать, не видел. Но Сэнсэй, о каком внутреннем потенциале ты говоришь, это ведь элементарные частицы? Что-то тут я не совсем тебя понимаю…
— В твоём непонимании виноват не я, — усмехнулся Сэнсэй, — а Бор.
— Бор? А кто это? — поинтересовался Руслан.
— Был такой датский физик, который в своё время, а точнее в 1912 году предложил решить проблему движения электронов вокруг ядра выделением для них так называемых стационарных орбит, двигаясь по которым электрон не утрачивает энергии.
— Ну, и чегось набедокурил сей мужик? — с неизменным чувством юмора спросил Женька.
А вот квантомеханическая теория строения атома, которая рассматривает атом как систему микрочастиц, не подчиняющихся законам классической механики, абсолютно не актуальна. На первый взгляд доводы немецкого физика Гейзенберга и австрийского физика Шрёдингера кажутся людям убедительными, но если всё это рассмотреть с другой точки зрения, то их выводы верны лишь отчасти, а в целом, так и вовсе оба не правы. Дело в том, что первый описал электрон, как частицу, а другой как волну. Кстати и принцип корпускулярно-волнового дуализма также неактуален, поскольку не раскрывает перехода частицы в волну и наоборот. То есть куцый какой-то получается у учёных господ. На самом деле всё очень просто. Вообще хочу сказать, что физика будущего очень проста и понятна. Главное дожить до этого будущего. А что касательно электрона, то он становится волной только в двух случаях. Первый — это когда утрачивается внешний заряд, то есть когда электрон не взаимодействует с другими материальными объектами, скажем с тем же атомом. Второй, в предосмическом состоянии, то есть когда снижается его внутренний потенциал.
— Кстати, о внутреннем потенциале, Сэнсэй, ты говорил, что его имеет любой материальный объект. А человек? — поинтересовался Николай Андреевич.
— А как же! Для человека это не просто энергия жизни, а определяющий фактор. Кто он, Человек или думающее животное?! Дело в том, что человек, в отличие от других материальных объектов, может менять свой внутренний потенциал с отрицательного (разрушительного) на положительный (созидательный).
— …А также управлять другими материальными объектами, — появился второй Сэнсэй. — К примеру, положительно заряженными частицами с отрицательным внутренним потенциалом мы довольно ловко и весьма охотно пользуемся. Кстати, может пора рассказать им, что это такое на самом деле, и как можно этим более эффективно пользоваться?
— Это ты за электричество что ли? — спросил третий Сэнсэй и, глянув на глуповато-удивлённые лица слушающих, с юмором изрёк: — Не думаю, что это их сильно заинтересует. Тем более что это ерунда по сравнению с тем, что они сейчас имеют возможность видеть меня в трёх экземплярах. Хотя на самом деле…
Квант
Квант (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения [1] — и последнее называют квантом. Например, энергия монохроматического электромагнитного излучения угловой частоты может принимать значения
, где
— редуцированная постоянная Планка, а
— целое число. В этом случае
имеет смысл энергии кванта излучения (иными словами, фотона), а
— смысл числа́ этих квантов (фотонов). В смысле, близком к этому, термин квант был впервые введен Максом Планком в его классической работе 1900 года — первой работе по квантовой теории, заложившей её основу. Вокруг идеи квантования с начала 1900-х годов развилась полностью новая физическая концепция, обычно называемая квантовой физикой.
Ныне прилагательное «квантовый» используется в названии ряда областей физики (квантовая механика, квантовая теория поля, квантовая оптика и т. д.). Широко применяется термин квантование, означающий построение квантовой теории некоторой системы или переход от её классического описания к квантовому. Тот же термин употребляется для обозначения ситуации, в которой физическая величина может принимать только дискретные значения — например, говорят, что энергия электрона в атоме «квантуется».
Сам же термин «квант» в настоящее время имеет в физике довольно ограниченное применение. Иногда его употребляют для обозначения частиц или квазичастиц, соответствующих бозонным полям взаимодействия (фотон — квант электромагнитного поля, фонон — квант поля звуковых волн в кристалле, гравитон — гипотетический квант гравитационного поля и т. д.), также о таких частицах говорят как о «квантах возбуждения» или просто «возбуждениях» соответствующих полей.
Кроме того, по традиции «квантом действия» иногда называют постоянную Планка. В современном понимании это название может иметь тот смысл, что постоянная Планка является естественной единицей измерения действия и других физических величин такой же размерности (например, момента импульса).
Некоторые кванты
Кванты некоторых полей имеют специальные названия:
Квантовые технологии. Модуль 1
Узнайте главные законы квантового мира
Задача этого курса — рассказать об устройстве квантового мира, его законах и о том, как именно квантовые эффекты могут быть полезны для ученых и инженеров, как создаются и как работают квантовые устройства.
Многие из квантовых устройств уже существуют в реальности — в виде лабораторных установок, технологических прототипов, некоторые из них даже можно купить. Очень скоро IT-профессионалы столкнутся с необходимостью понимать принципы работы квантовых приборов.
Развитие традиционной электроники приближается к своему пределу: мы не сможем делать транзисторы меньше определенного размера, а значит, рост вычислительной мощности на единицу объема устройства скоро остановится. Тысячи ученых и инженеров ищут способы обхода этих ограничений, и многие эксперты считают, что будущее за решениями, основанными на квантовых эффектах.
В этом модуле вы узнаете:
• что такое кванты;
• как ученые узнали о существовании квантовых эффектов;
• чем квантовый мир отличается от привычного нам мира классической физики и какие законы им управляют.
Оглавление
Модуль 1. Главные законы квантового мира
Проверочный тест
Что такое квант?
Коротко: энергия и излучение передаются не непрерывно, а конечными порциями, квантами.
Длинно: слово «квант» (quantum) можно перевести с английского как «количество, порция, квант», само это название указывает на то, что одной из основ квантовой механики является принцип «квантования». Согласно этому принципу энергия излучения поглощается и передается порциями, квантами. Это верно для очень многих объектов микромира, в первую очередь для атомов и электронов.
Пример: с «квантовыми» преобразованиями мы постоянно сталкиваемся в быту, когда, например, имеем дело с цифровой техникой. Так, звук имеет волновую природу, и в аналоговой аппаратуре он записывался «как есть», то есть колебания мембраны микрофона превращались в дорожки на грампластинке. На цифровой записи звук «квантуется»: техника с определенной частотой (ее называют частотой дискретизации) измеряет силу звука и получает набор 32 «квантовых» значений.
Квантовые процессы в атоме
Привычная нам со школы планетарная модель атома Эрнеста Резерфорда, в которой электроны-планеты вращаются вокруг ядра-солнца, на самом деле не может существовать в реальности. Согласно законам классической физики электроны, двигаясь по кольцевым орбитам и испытывая ускорение, должны излучать и терять энергию. Следовательно, через очень короткое время электроны должны были бы упасть на ядро, и атом прекратил бы существовать.
Квантовые постулаты Нильса Бора гласили, что у электрона в атоме есть определенный набор дискретных энергетических состояний (уровней, или орбит), причем электроны излучают (то есть испускают) фотон определенной энергии только в момент перехода на более низкий уровень. Пока электрон находится на определенном энергетическом уровне, он не излучает — делать это он может только при переходе на другой уровень.
Теория атома Бора позволила, например, объяснить существование линейчатых спектров. Линии в спектрах указывали, что атомы почему-то предпочитали поглощать или излучать только на каких-то излюбленных частотах. Объяснить это классическими методами не удавалось. Только новые представления об атоме позволили понять, что линии в спектрах соответствуют определенным энергетическим уровням.
Энергетические переходы в атоме: поглощение фотона приводит к переходу электрона на более высокий энергетический уровень (например: с Е1 на Е2, как на схеме), а испускание — на нижележащий уровень (с Е3 на Е2).
Энергетические переходы в атоме зависят от длины волны поглощенного или испущенного излучения. По традиции их называют по именам ученых, открывших соответствующие этим переходам серии линий в спектре: серия Лаймана, серия Бальмера и так далее.
Квантовая природа энергетических переходов в атомах позволила нам создать первые квантовые устройства — лазеры. В основе их работы лежит использование эффекта вынужденного излучения.
Если коротко, этот эффект состоит в том, что, облучая некоторые вещества излучением определенной длины волны, можно добиться инверсной заселенности энергетических уровней в атомах — большая часть электронов окажется на верхних этажах. Затем они начинают излучать, но излучать не «обычный» свет, а когерентный и монохроматический, то есть строго упорядоченный по фазе и одной определенной длины волны.
Кроме того, на использовании энергетических переходов основаны квантовые стандарты частоты и атомные часы, измеряющие время благодаря очень точной периодичности энергетических переходов в атомах.
История: как ученые узнали о квантовом мире
Загадка фотоэффекта
Представление о фотоне, элементарной частице — переносчике электромагнитного взаимодействия, возникло в начале XX века благодаря появлению ряда парадоксов, которые не могла разрешить классическая физика. В их числе был и фотоэффект, или испускание электронов с поверхности металла при облучении ее светом.
Оказалось, что при изменении цвета излучения с зеленого на красный электроны с поверхности металла вылетать переставали. Причем мощность красного света, падающего на пластинку, значения не имела.
Объяснил это явление Альберт Эйнштейн. Он предположил, что свет излучается порциями, квантами, энергия которых определяется частотой (то есть цветом) излучения.
Увеличивая интенсивность красного света, мы не даем каждому фотону дополнительную энергию, а просто увеличиваем количество частиц света, падающих на поверхность, и если одиночный фотон не в силах выбить электрон, то это не смогут и все остальные.
Зеленый свет имеет меньшую длину волны, а значит, его фотоны обладают большей энергией. И энергии каждого «зеленого» фотона оказывается достаточно, чтобы выбить электрон.
Ультрафиолетовая катастрофа
Еще одна проблема — так называемая ультрафиолетовая катастрофа, связанная с понятием абсолютно черного тела. В самом общем виде это объект, который ничего не отражает и поглощает все падающее на него электромагнитное излучение, а потом излучает поглощенную энергию, например в инфракрасном диапазоне.
Абсолютно черное тело, как и другие идеальные физические объекты (например, идеальный газ), в природе не существует, но приближением к нему, своего рода моделью, может служить отверстие в полом ящике, которое «не выпускает» попавшее в него излучение.
Модель абсолютно черного тела, поглощающего, но не отражающего излучение
В рамках классической физики формула Релея — Джинса предсказывала, что в ультрафиолетовом диапазоне энергия, излучаемая абсолютно черным телом, становится бесконечной. Это, разумеется, не имеет смысла, а значит, не имеет смысла и теория, на которой основывается формула. Классическая физика сталкивается с «ультрафиолетовой катастрофой».
Ситуацию спас Макс Планк, описавший излучение абсолютно черного тела исходя из квантовой теории, то есть исходя из допущения, что атомы могут поглощать и излучать свет только порциями и только на определенных частотах. Формула Планка давала реалистичные предсказания и в ультрафиолетовом диапазоне.
Зависимость излучательной способности черного тела (r) от частоты (омега). Классическая теория (формула Релея — Джинса) предсказывает бесконечный рост, квантовые теории (формулы Планка и Вина) дают реалистичные предсказания.
Корпускулярно-волновой дуализм
Чтобы совместить противоречащие друг другу свойства, проявляемые светом в разных условиях, была сформулирована идея корпускулярно-волнового дуализма. Согласно этой концепции у каждого объекта, обладающего энергией и импульсом, есть связанная с этими параметрами длина волны (волна де Бройля).
Частица начинает вести себя не как точечный объект, а как волна, когда ее окружение и измерительный прибор становятся сравнимы по размерам с этой длиной. Чем выше масса, тем короче длина волны де Бройля и тем сложнее заметить волновое поведение.
Широко известно, что волновые свойства демонстрируют электроны, однако типичные для волны эффекты, например способность формировать дифракционную картину (последовательность полос на экране, созданных взаимным усилением или, наоборот, ослаблением волн), показывают и значительно более массивные объекты.
В экспериментах дифракционная картина наблюдалась, например, у фуллеренов — молекул, состоящих из 60 атомов углерода.
Однако в позднем и более строгом варианте квантовой механики понятие волны де Бройля заменено волновой функцией — уравнением Шрёдингера, описывающим квантовые объекты.
Квантовые эффекты: принцип неопределенности
Коротко: в квантовом мире действует правило: чем точнее мы пытаемся измерить один параметр объекта, тем менее точным оказывается другой параметр, и наоборот.
Длинно: квантовый мир сильно отличается от «классического», в том числе тем, что любые события и параметры процессов носят вероятностный характер. Мы не можем сказать, что тот или иной объект находится в определенной точке, мы можем сказать лишь, что он находится в той или иной точке с определенной вероятностью.
В рамках классической механики вы можете измерить координату и скорость частицы сколь угодно точно — эти параметры не связаны друг с другом, и сам факт измерения никак их не изменяет. Однако в микромире в действие вступает один из главных квантовых законов — принцип неопределенности Вернера Гейзенберга.
Он гласит, что произведение погрешностей измерения этих двух величин — координаты (x) и скорости (v) — не может быть меньше постоянной Планка (h) (константы, связывающей длину волны и энергию фотонов), разделенной на массу частицы (m).
Это означает, что если вы увеличиваете точность измерения координаты, то вам придется пожертвовать точностью измерения скорости, и наоборот. Вы можете попытаться измерить абсолютно точно координату, но при этом вы ничего не будете знать о скорости.
Принцип неопределенности относится не только к скорости и координатам — он работает для любых пар связанных параметров любой квантовой системы (например, энергия частицы и момент времени, когда она обладает этой энергией).
Природа этой неопределенности связана с процессом измерения. В «классическом» мире измерение почти никак не влияет на измеряемый параметр. В квантовом мире измерительный прибор влияет на системы, взаимодействует с ними — иначе говоря, на какое-то время образует с ними единую квантовую систему и тем самым вносит неустранимые помехи.
Поэтому состояние квантовых объектов описывается уравнением Шрёдингера, указывающим лишь вероятность нахождения частицы в определенной точке. «Размытое», вероятностное поведение квантовых объектов ведет к явлению «квантового туннелирования» — способности квантовых объектов проникать сквозь стены, точнее, проходить сквозь квантовый барьер.
В классической физике, если объект, например пуля, не имеет достаточной энергии, чтобы пробить стену, он останется по эту сторону стены; если мяч, который вы бросили, не смог выкатиться из ямы, потому что вы недостаточно сильно его толкнули, то он скатится обратно. В этом случае физики говорят, что объект не смог преодолеть потенциальный барьер.
Однако в квантовом мире волновая функция у потенциального барьера убывает экспоненциально (но все же не мгновенно), и если барьер не будет слишком высок, то есть ненулевая вероятность, что частица окажется по другую его сторону.
На эффекте квантового туннелирования основаны многие технологии, в частности туннельные микроскопы, благодаря туннельному эффекту работают сверхпроводящие кубиты — элементы квантовых вычислительных устройств.
Квантовые эффекты: запутанность и телепортация
Что такое суперпозиция
Еще одна черта зыбкости квантового мира — способность квантовых объектов находиться в состоянии суперпозиции. Этот термин используется и в классической физике, где он означает способность волн складываться друг с другом, усиливая или ослабляя друг друга.
В отличие от них, квантовые объекты могут находиться одновременно в нескольких состояниях. Если точнее, то волновую функцию квантовой системы в суперпозиции можно описать как сумму вероятностей двух состояний, где состояние 1 имеет одну вероятность, а состояние 2 — другую.
Если квантовую систему измерить, то мы будем наблюдать какое-то одно из состояний (как говорят физики, система коллапсирует в определенное состояние).
Геометрическое представление суперпозиции квантового объекта, который может иметь спин (магнитный момент) 1 или 0. Греческой буквой «пси» обозначена волновая функция, зависимая от соотношения вероятностей обоих состояний.
Фотон в суперпозиции
Один из примеров — фотон, способный находиться в суперпозиции двух состояний: горизонтальной и вертикальной поляризации.
Поляризация — одно из свойств электромагнитного излучения; ее, говоря в общем, можно представить как ориентацию плоскости, в которой колеблется электромагнитная волна.
В излучении от многих источников, например от Солнца, плоскость поляризации может быть ориентирована хаотически. Но если такое излучение пропустить через поляризатор — фильтр, роль которого могут играть, например, некоторые кристаллы, — то сквозь него пройдет только излучение c определенной ориентацией поляризации, например вертикальной.
У каждого состояния фотона есть определенная вероятность. Если мы измерим его поляризацию, то получим одно определенное значение. Но для того, чтобы понять, какими были исходные вероятности, нам нужно будет измерить множество таких фотонов (если нам удастся их получить).
Суперпозиция может касаться как «внутренних» состояний частицы, так и ее пространственных положений, то есть, говоря в общем, объект находится одновременно в двух точках. Если использовать более корректную формулировку, то волновая функция говорит нам, что вероятность для одной точки одна, для другой — другая.
Можно провести эксперимент с фотоном: послать его через полупрозрачное зеркало, соприкоснувшись с которым он с 50-процентной вероятностью отразится, а с 50-процентной вероятностью пройдет насквозь. В этом случае он будет «одновременно» и с одной стороны зеркала, и с другой.
Если мы проведем измерения, то фотон окажется где-то в одной точке, но мы можем построить оптическую систему так, что оба пути от зеркала сошлись вновь, и в этом случае мы увидим дифракционную картину — след интерференции (смешивания) фотона с самим собой.
Квантовая запутанность
Частный случай суперпозиции — квантовая запутанность, способность квантовых объектов «чувствовать» друг друга на любом расстоянии. Эйнштейн называл ее «жутким дальнодействием».
В классическом мире запутанность можно описать с помощью такой аналогии: представьте, что двух человек (назовем их по традиции, принятой у квантовых физиков, Алиса и Боб) попросили не глядя выбрать одну из двух разных монет.
После этого Алиса отправилась на Альфу Центавра, а Боб остался дома. Тем не менее, между ними сохранилась определенная связь: стоит Алисе посмотреть на свою монету, и она сразу поймет, какая монета осталась у Боба на Земле.
В квантовом случае все выглядит почти так же: представим себе запутанную квантовую систему из двух фотонов. Она описывается одной волновой функцией, устанавливающей определенные вероятности, что один фотон окажется с вертикальной поляризацией, а другой — с горизонтальной, причем речь идет о связанных параметрах, которые нельзя определить независимо (физики говорят в этом случае о несепарабельной системе).
В этом случае, если Алиса увезет свой фотон на Альфу Центавра, измерит его поляризацию и получит, что она вертикальная, то в тот же момент поймет, что у Боба остался фотон с горизонтальной поляризацией. «Жуть» ситуации состоит в том, что фотон Боба никак не может знать, какое состояние «правильное», но тем не менее его измерение на Земле даст именно эту поляризацию и никакую другую.