При исчезновении заряда растворимость белка снижается потому что

Общая характеристика физико-химических свойств белков

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

Физико-химические свойства белков обусловлены их структурной организацией (первичной, вторичной, третичной и, если таковая имеется, четвертичной структурой), а также находятся в зависимости от факторов внешней среды.

1.Высокая молекулярная масса белков;

2.Неисчерпаемое разнообразие конформации белков при строгой ее специфичности;

3.Динамичность конформации белков;

4.Гидратация и растворимость белков. Образование коллоидных растворов;

5.Способность белка к ионизации;

6.Способность радикалов аминокислотных остатков белков в процессе жизнедеятельности подвергаться различным химическим превращениям;

7.Способность белков к специфическим взаимодействиям с другими веществами;

8.Способность белков к денатурации и ренатурации;

9.Способность белков давать цветные реакции, обусловленные наличием пептидной связи или определенным аминокислотным составом;

10.Способность к гидролизу под действием кислот или ферментов

1.Высокая молекулярная масса белков. Белки имеют молекулярную массу выше 6000 Да. Она зависит от величины коэффициента поликонденсации, а также от аминокислотного состава (т.к. масса аминокислот неодинакова) и наличия четвертичной структуры

Высокая молекулярная масса белков обусловливает их неспособность проходить через полупроницаемые мембраны, что используется в конструкции аппарата ²искусственная почка² У больных хронической почечной недостаточностью не образуется моча и не происходит удаление низкомолекулярных продуктов обмена. Для того чтобы предотвратить отравление они периодически должны подвергаться гемодиализу, благодаря которому из крови удаляются низкомолекулярные соединения, и сохраняется основной набор белков крови.

Это свойство используется также для выделения и очистки белков путем гель-фильтрации.

2.Неисчерпаемое многообразие конформации белков при строгой ее специфичности.Поразительная особенность белков состоит в том, что каждый из них имеет четко определенную, присущую только ему трехмерную структуру. Будучи развернутыми или уложенными случайным образом, полипептидные цепи лишены биологической активности. Функциональные свойства белков определяются их конформацией, т.е. пространственным расположением атомов, которое формирует своеобразный рельеф поверхности молекулы белка. Конформация определяется первичной структурой белка, изменение которой приводит к нарушению нативной конформации белка и, следовательно, изменению его функциональных свойств. Характер этих изменений не всегда возможно предсказать.

3.Динамичность конформации белков. Конформация белка в целом и отдельных участков его поверхности не остается неизменной и характеризуется динамичностью. Важнейшим условием реализации этого свойства является стабилизация структуры белка множеством слабых связей. Динамичность конформации является не столько следствием, сколько важнейшим условием проявления функциональной активности белков. Так, в момент присоединения первой молекулы кислорода к гемоглобину происходит изменение взаимного расположения a и b-цепей в молекуле гемоглобина. Это облегчает присоединение последующих 3 молекул кислорода. Активный центр фермента имеет лишь общее стерическое соответствие со своим субстратом. В ходе взаимодействия фермента и субстрата происходят конформационные изменения в молекуле фермента, за счет которых достигается полное соответствие конформации связывающего участка фермента и субстрата.

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

Факторами стабилизации белков в растворе являются наличие заряда поверхности белковой молекулы, броуновское движение молекул.

При добавлении в раствор белка органических растворителей вследствие уменьшения диэлектрической постоянной и уменьшения степени гидратации белков происходит их агрегация и выпадение в осадок.

Белковые растворы не являются типичными коллоидными растворами, т.к. белки диспергированы до единичных молекул и образуют гомогенный раствор. Сходство белковых и коллоидных растворов основано на том, что молекулы белков имеют размеры, приближающиеся к размеру мицелл коллоидного раствора. Растворы белков при определенных условиях могут терять текучесть и образовывать гели, возникающие в результате объединения молекул в виде сетки, внутреннее пространство которой заполнено растворителем. В виде гелей белки находятся в хрусталике глаза, гели образуются при сквашивании молока, при подготовке растений к зимнему периоду происходит переход части белков в гелеобразное состояние.

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

Рис.1.3 Образование гидратной (сольватной) оболочки белков

В свою очередь степень ионизации (а значит и знак, и величина заряда) зависит от рН среды. При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

катион амфион анион

Рис.1.4. Схема ионизации белков

Значение рН, при котором число положительных зарядов равно числу отрицательных зарядов, называется изоэлектрической точкой данного белка. В растворах с рН ниже изоэлектрической точки белок приобретает положительный заряд, а выше ИЭТ отрицательный. В ИЭТ точке белки наиболее неустойчивы. Это может быть использовано для разделения белков. Белки с ИЭТ в области кислых значений рН характеризуются преобладанием кислых аминокислот ( ГЛУ и АСП ). ИЭТ белка выше 7 указывает на преобладание в составе белка основных аминокислот ( АРГ, ЛИЗ, ГИС).

6.Способность радикалов аминокислот в процессе жизнедеятельности подвергаться различным превращениям. В некоторых белках после сборки их полипептидных цепей происходит химическая модификация радикалов некоторых аминокислот с образованием минорных аминокислот. Так, некоторые белковые факторы системы свертывания крови подвергаются гамма-карбоксилированию поверхностно расположенных остатков глутамата. В результате карбоксилирования они приобретают способность связываться с ионами кальция и проявлять свойства фактора свертывания крови.

7.Способность белков к специфическим взаимодействиям с другими веществами основана на том, что связывающий участок белка и взаимодействующее с ним вещество являются комплиментарными друг другу За счет этого достигается безошибочность взаимодействия белков со своим лигандом при условии, что одновременно в клетке происходят миллионы реакций.

8. Способность белков к денатурации. Под денатурацией белка понимают нарушение нативной конформации белковой молекулы, приводящее к уменьшению или полной потере ее растворимости, изменению других физико-химических свойств, утрате специфической биологической активности. Денатурация не сопровождается разрывом пептидных связей и нарушением первичной структуры белка. Происходит расщепление дисульфидных мостиков, гидрофобных, ионных, водородных связей. В результате нарушается третичная структура и в значительной мере вторичная. Денатурацию белка вызывают как физические, так и химические факторы. К физическим денатурирующим факторам относятся: нагревание, ультрафиолетовый свет, высокое давление, механические воздействия, ультразвук. К химическим факторам денатурации относятся: тяжелые металлы, органические растворители, минеральные и органические кислоты, экстремальные значения рН, ионные детергенты.

Денатурированный белок легче подвергается ферментативному гидролизу, поэтому термические способы обработки пищи способствуют лучшему усвоению пищевых белков. Во многих случаях денатурация является необратимым процессом (белки сваренного яйца). В некоторых случаях при медленном возвращении белка к оптимальным условиям (например, уменьшении концентрации мочевины) возможна его ренатурация. Ренатурация белков в живых организмах не описана. По-видимому, это связано с тем, что денатурированный белок легко расщепляется протеолитическими ферментами.

Источник

При исчезновении заряда растворимость белка снижается потому что

§ 9. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ

Белки – это очень крупные молекулы, по своим размерам они могут уступать только отдельным представителям нуклеиновых кислот и полисахаридам. В таблице 4 представлены молекулярные характеристики некоторые белков.

Молекулярные характеристики некоторых белков

Относитель-ная молекулярная масса

Число аминокислотных остатков

Зная относительную молекулярную массу белка, можно приблизительно оценить, какое число аминокислотных остатков входит в его состав. Средняя относительная молекулярная масса аминокислот, образующих полипептидную цепь, равна 128. При образовании пептидной связи происходит отщепление молекулы воды, следовательно, средняя относительная масса аминокислотного остатка составит 128 – 18 = 110. Используя эти данные, можно подсчитать, что белок с относительной молекулярной массой 100000 будет состоять приблизительно из 909 аминокислотных остатков.

Электрические свойства белковых молекул

Электрические свойства белков определяются присутствием на их поверхности положительно и отрицательно заряженных аминокислотных остатков. Наличие заряженных группировок белка определяет суммарный заряд белковой молекулы. Если в белках преобладают отрицательно заряженные аминокислоты, то его молекула в нейтральном растворе будет иметь отрицательный заряд, если преобладают положительно заряженные – молекула будет иметь положительный заряд. Суммарный заряд белковой молекулы зависит и от кислотности (рН) среды. При увеличении концентрации ионов водорода (увеличении кислотности) происходит подавление диссоциации карбоксильных групп:

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

и в то же время увеличивается число протонированных амино-групп;

Таким образом, при увеличении кислотности среды происходит уменьшение на поверхности молекулы белка числа отрицательно заряженных и увеличение числа положительно заряженных групп. Совсем другая картина наблюдается при снижении концентрации ионов водорода и увеличении концентрации гидроксид-ионов. Число диссоциированных карбоксильных групп возрастает

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

и снижается число протонированных аминогрупп

Итак, изменяя кислотность среды, можно изменить и заряд молекулы белка. При увеличении кислотности среды в молекуле белка снижается число отрицательно заряженных группировок и увеличивается число положительно заряженных, молекула постепенно теряет отрицательный и приобретает положительный заряд. При снижении кислотности раствора наблюдается противоположная картина. Очевидно, что при определенных значениях рН молекула будет электронейтральной, т.е. число положительно заряженных групп будет равно числу отрицательно заряженных групп, и суммарный заряд молекулы будет равен нулю (рис. 14).

Значение рН, при котором суммарный заряд белка равен нулю, называется изоэлектрической точкой и обозначается pI.

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

Рис. 14. В состоянии изоэлектрической точки суммарный заряд молекулы белка равен нулю

Изоэлектрическая точка для большинства белков находится в области рН от 4,5 до 6,5. Однако есть и исключения. Ниже приведены изоэлектрические точки некоторых белков:

При значениях рН ниже изоэлектрической точки белок несет суммарный положительный заряд, выше – суммарный отрицательный.

Растворимость белков

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

Рис. 15. Образование гидратной оболочки вокруг молекулы белка.

На растворимость белка влияет наличие нейтральных солей (Na2SO4, (NH4)2SO4 и др.) в растворе. При малых концентрациях солей растворимость белка увеличивается (рис. 16), так как в таких условиях увеличивается степень диссоциации полярных групп и экранируются заряженные группы белковых молекул, тем самым снижается белок-белковое взаимодействие, способствующее образованию агрегатов и выпадению белка в осадок. При высоких концентрациях солей растворимость белка снижается (рис. 16) вследствие разрушения гидратной оболочки, приводящего к агрегации молекул белка.

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

Рис. 16. Зависимость растворимости белка от концентрации соли

Существуют белки, которые растворяются только в растворах солей и не растворяются в чистой воде, такие белки называют глобулины. Существуют и другие белки – альбумины, они в отличие от глобулинов хорошо растворимы в чистой воде.
Растворимость белков зависит и от рН растворов. Как мы уже отмечали, минимальной растворимостью обладают белки в изоэлектрической точке, что объясняется отсутствием электростатического отталкивания между молекулами белка.
При определенных условиях белки могут образовывать гели. При образовании геля молекулы белка формируют густую сеть, внутреннее пространство которой заполнено растворителем. Гели образуют, например, желатина (этот белок используют для приготовления желе) и белки молока при приготовлении простокваши.
На растворимость белка оказывает влияние и температура. При действии высокой температуры многие белки выпадают в осадок вследствие нарушения их структуры, но об этом более подробно поговорим в следующем разделе.

Денатурация белка

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

Рис. 17. Денатурация белка

При денатурации гидрофобные радикалы аминокислот, находящиеся в нативных белках в глубине молекулы, оказываются на поверхности, в результате создаются условия для агрегации. Агрегаты белковых молекул выпадают в осадок. Денатурация сопровождается потерей биологической функции белка.

Денатурация белка может быть вызвана не только повышенной температурой, но и другими факторами. Кислоты и щелочи способны вызвать денатурацию белка: в результате их действия происходит перезарядка ионогенных групп, что приводит к разрыву ионных и водородных связей. Мочевина разрушает водородные связи, следствием этого является потеря белками своей нативной структуры. Денатурирующими агентами являются органические растворители и ионы тяжелых металлов: органические растворители разрушают гидрофобные связи, а ионы тяжелых металлов образуют нерастворимые комплексы с белками.

Наряду с денатурацией существует и обратный процесс – ренатурация. При снятии денатурирующего фактора возможно восстановление исходной нативной структуры. Например, при медленном охлаждении до комнатной температуры раствора восстанавливается нативная структура и биологическая функция трипсина.

Белки могут денатурировать и в клетке при протекании нормальных процессов жизнедеятельности. Совершенно очевидно, что утрата нативной структуры и функции белков – крайне нежелательное событие. В связи с этим следует упомянуть об особых белках – шаперонах. Эти белки способны узнавать частично денатурированные белки и, связываясь с ними, восстанавливать их нативную конформацию. Шапероны также узнают белки, процесс денатурации которых зашел далеко, и транспортируют их в лизосомы, где происходит их расщепление (деградация). Шапероны играют важную роль и в процессе формирования третичной и четвертичной структур во время синтеза белка.

Интересно знать! В настоящее время часто упоминается такое заболевание, как коровье бешенство. Эту болезнь вызывают прионы. Они могут вызывать у животных и человека и другие заболевания, носящие нейродегенеративный характер. Прионы – это инфекционные агенты белковой природы. Прион, попадая в клетку, вызывает изменение конформации своего клеточного аналога, который сам становится прионом. Так возникает заболевание. Прионный белок отличается от клеточного по вторичной структуре. Прионная форма белка имеет в основном b-складчатую структуру, а клеточная – a-спиральную.

Источник

Свойства белков следуют из их строения

К физико-химическим свойствам белков относят амфотерность, растворимость, способность к денатурации, коллоидные свойства.

Амфотерность

Так как белки содержат кислые и основные аминокислоты, то в их составе всегда имеются свободные кислые (СОО – ) и основные (NH3 + ) группы.

Заряд белка зависит от соотношения количества кислых и основных аминокислот. Поэтому, аналогично аминокислотам, белки заряжаются положительно при уменьшении рН, и отрицательно при его увеличении. Если рН раствора соответствует изоэлектрической точке белка, то заряд белка равен 0.

Если в пептиде или белке преобладают основные аминокислоты (лизин и аргинин), то при нейтральных рН заряд белка положительный, т.к. обусловлен положительным зарядом радикала этих аминокислот.

Если в белке преобладают кислые аминокислоты (глутамат и аспартат), то белок кислый, при нейтральных рН заряд белка отрицательный и изоэлектрическая точка находится в кислой среде. Для большинства природных белков изоэлектрическая точка находится в диапазоне рН 4,8-5,4, что свидетельствует о преобладании в их составе глутаминовой и аспарагиновой аминокислот.

Амфотерность имеет значение для выполнения белками некоторых функций. Например, буферные свойства белков, т.е. способность поддерживать стабильность рН крови, основаны на способности присоединять ионы Н + при закислении среды или отдавать их при защелачивании.

С практической стороны наличие амфотерности позволяет разделять белки по заряду (электрофорез) или использовать изменение величины рН раствора для осаждения какого-либо известного белка. Наличие как положительных, так и отрицательных зарядов в белке обусловливает их способность к высаливанию, что удобно для выделения белков в нативной (живой) конформации.

Влияние рН на заряд белка

При исчезновении заряда растворимость белка снижается потому что. Смотреть фото При исчезновении заряда растворимость белка снижается потому что. Смотреть картинку При исчезновении заряда растворимость белка снижается потому что. Картинка про При исчезновении заряда растворимость белка снижается потому что. Фото При исчезновении заряда растворимость белка снижается потому что

Изменение заряда белковой цепи при изменении pH

Растворимость

Так как большинство белков несет много заряженных групп, то в целом они водорастворимы. Растворимость объясняется:

Например, 100 г белка альбумина связывает 30-50 г воды.

Источник

При исчезновении заряда растворимость белка снижается потому что

Физико-химические свойства белков

Аминокислотный состав и пространственная организация каждого белка определяют его физико-химические свойства. Белки обладают кислотно-основными, буферными, коллоидными и осмотическими свойствами.

Белки как амфотерные макромолекулы

Белки являются амфотерными полиэлектролитами, т.е. сочетают в себе, подобно аминокислотам, кислотные и основные свойства. Однако природа групп, придающих амфотерные свойства белкам, далеко не та же, что у аминокислот. Кислотно-основные свойства аминокислот обусловлены прежде всего наличием α-амино- и α-карбоксильной групп (кислотно-основная пара). В молекулах белков эти группы участвуют в образовании пептидных связей, а амфотерность белкам придают кислотно-основные группы боковых радикалов аминокислот, входящих в белок. Разумеется, в каждой молекуле нативного белка (полипептидной цепи) имеется как минимум по одной концевой α-амино- и α-карбоксильной группе (если у белка только третичная структура). У белка с четвертичной структурой число концевых групп —NН2 и —СООН равно числу субъединиц, или протомеров. Однако столь незначительное число этих групп не может объяснить амфотерность макромолекул белка. Поскольку большая часть полярных групп находится на поверхности глобулярных белков, то именно они определяют кислотно-основные свойства и заряд белковой молекулы. Кислотные свойства белку придают кислые аминокислоты (аспарагиновая, глутаминовая и аминолимонная), а щелочные свойства — основные аминокислоты (лизин, аргинин, гистидин). Чем больше кислых аминокислот содержится в белке, тем ярче выражены его кислотные свойства, и чем больше входит в состав белка основных аминокислот, тем сильнее проявляются его основные свойства. Слабая диссоциация SН-группы цистеина и фенольной группы тирозина (их можно рассматривать как слабые кислоты) почти не влияет на амфотерность белков.

Буферные свойства. Белки хотя и обладают свойствами буфера, но емкость их при физиологических значениях рН ограничена. Исключение составляют белки, содержащие много гистидина, так как только боковая группа гистидина обладает буферными свойствами в интервале значений рН, близких к физиологическим. Таких белков очень мало. Гемоглобин чуть ли не единственный белок, содержащий до 8% гистидина, является мощным внутриклеточным буфером в эритроцитах, поддерживая рН крови на постоянном уровне.

Заряд белковой молекулы зависит от содержания в ней кислых и основных аминокислот, а точнее, от ионизации кислых и основных групп бокового радикала этих аминокислот. Диссоциация СООН-групп кислых аминокислот вызывает появление отрицательного заряда на поверхности белка, а боковые радикалы щелочных аминокислот несут положительный заряд (за счет присоединения Н + к основным группам). В нативной молекуле белка заряды распределяются асимметрично в зависимости от укладки полипептидной цепи в пространстве. Если в белке кислые аминокислоты преобладают над основными, то в целом молекула белка электроотрицательна, т. е. является полианионом, и наоборот, если преобладают основные аминокислоты, то она заряжена положительно, т. е. ведет себя как поликатион.

Знание изоэлектрической точки очень важно для понимания стабильности белков в растворах, так как в изоэлектрическом состоянии белки наименее устойчивы. Незаряженные частицы белка могут слипаться друг с другом и выпадать в осадок.

Коллоидные и осмотические свойства белков

Поведение белков в растворах имеет некоторые особенности. Обычные коллоидные растворы устойчивы только в присутствии стабилизатора, который препятствует осаждению коллоидов, располагаясь на границе раздела «растворенное вещество — растворитель».

Светорассеивающую способность белков и других высокомолекулярных веществ используют для их количественного определения методом нефелометрии, сравнивая интенсивность светорассеивания взвешенными частицами исследуемого и стандартного золя.

Малая скорость диффузии. Диффузией называется самопроизвольное перемещение молекул растворенных веществ вследствие градиента концентраций (от зон с высокой концентрацией к зонам с низкой концентрацией). Белки имеют ограниченную скорость диффузии в сравнении с обычными молекулами и ионами, которые перемещаются в сотни и тысячи раз быстрее, чем белки. Скорость диффузии белков больше зависит от формы их молекул, чем от молекулярной массы. Глобулярные белки в водных растворах подвижнее фибриллярных белков.

Диффузия белков имеет важное значение для нормального функционирования клетки. Синтез белков в любом участке клетки (там, где имеются рибосомы) мог бы привести при отсутствии диффузии к скоплению белков в месте их образования. Внутриклеточное распределение белков происходит путем диффузии. Поскольку скорость диффузии белков невысока, она ограничивает скорость процессов, зависящих от функции диффундирующего белка в соответствующем участке клетки.

Осмотические свойства белков. Белки из-за высокой молекулярной массы не могут диффундировать через полупроницаемую мембрану, тогда как низкомолекулярные вещества легко проходят через такие мембраны. Это свойство белков используют в практике для очистки их растворов от низкомолекулярных примесей. Такой процесс называется диализом.

Неспособность белков диффундировать через полупроницаемые мембраны вызывает явление осмоса, т. е. перемещение молекул воды через полупроницаемую мембрану в раствор белка. Если раствор белка отделить от воды целлофановой мембраной, то, стремясь к достижению равновесия, молекулы воды диффундируют в раствор белка. Однако перемещение воды в пространство, где находится белок, повышает в нем гидростатическое давление (давление столба воды), которое препятствует дальнейшей диффузии молекул воды к белку.

То давление, или сила, которое следует приложить, чтобы остановить осмотический ток воды, называется осмотическим давлением. Осмотическое давление в очень разбавленных растворах белка пропорционально молярной концентрации белка и абсолютной температуре.

Биологические мембраны также непроницаемы для белка, поэтому осмотическое давление, создаваемое белком, зависит от концентрации его внутри и вне клетки. Осмотическое давление, обусловленное белком, называют также онкотическим давлением.

Высокая вязкость растворов белка. Высокая вязкость характерна не только для растворов белка, но вообще для растворов высокомолекулярных соединений. С увеличением концентрации белка вязкость раствора повышается, поскольку повышаются силы сцепления между молекулами белка. Вязкость зависит от формы молекул. Растворы фибриллярных белков всегда более вязки, чем растворы глобулярных белков. На вязкость растворов сильно влияют температура и присутствие электролитов. С повышением температуры вязкость растворов белка снижается. Добавки некоторых солей, например кальция, повышают вязкость, способствуя сцеплению молекул с помощью кальциевых мостикoв. Иногда вязкость белкового раствора увеличивается настолько, что он теряет текучесть и переходит в гелеобразное состояние.

Способность белков к образованию гелей. Взаимодействие между макромолекулами белка в растворе может привести к образованию структурных сеток, внутри которых находятся захваченные молекулы воды. Такие структурированные системы называются гелями или студнями. Считается, что белок протоплазмы клетки может переходить в гелеобразное состояние. Характерный пример — тело медузы является как бы живым студнем, содержание воды в котором до 90%.

Гелеобразование легче протекает в растворах фибриллярных белков; их палочковидная форма способствует лучшему контакту концов макромолекул. Это хорошо известно из бытовой практики. Пищевые студни готовят из продуктов (кости, хрящи, мясо), содержащих в большом количестве фибриллярные белки.

В процессе жизнедеятельности организма гелеобразное состояние белковых структур имеет важное физиологическое значение. Коллагеновые белки костей, сухожилий, хрящей, кожи и т. д. обладают высокой прочностью, упругостью и эластичностью, потому что находятся в гелеобразном состоянии. Отложение минеральных солей при старении снижает их упругость и эластичность. В гелеобразном или студнеобразном виде находится в мышечных клетках актомиозин, выполняющий сократительную функцию.

В живой клетке происходят процессы, напоминающие переход золь — гель. Протоплазма клетки представляет собой золеподобную вязкую жидкость, в которой обнаруживаются островки гелеподобных структур.

Гидратация белков и факторы, влияющие на их растворимость

Белки — гидрофильные вещества. Если растворять сухой белок в воде, то сначала он, как всякое гидрофильное высокомолекулярное соединение, набухает, а затем молекулы белка начинают постепенно переходить в раствор. При набухании молекулы воды проникают в белок и связываются с его полярными группами. Плотная упаковка полипептидных цепей разрыхляется. Набухший белок можно считать как бы обратным раствором, т. е. раствором молекул воды в высокомолекулярном веществе — белке. Дальнейшее поглощение воды приводит к отрыву молекул белка от общей массы и растворению. Но набухание не всегда ведет к растворению; некоторые белки, например коллаген, так и остаются в набухшем виде, поглотив большое количество воды.

Растворение связано с гидратацией белков, т. е. связыванием молекул воды с белками. Гидратная вода так прочно связана с макромолекулой белка, что отделить ее удается с большим трудом. Это говорит не о простой адсорбции, а об электростатическом связывании молекул воды с полярными группами боковых радикалов кислых аминокислот, несущих отрицательный заряд, и основных аминокислот, несущих положительный заряд.

Однако часть гидратной воды связывается пептидными группами, которые образуют с молекулами воды водородные связи. Например, полипептиды с неполярными боковыми группами тоже набухают, т. е. связывают воду. Так, большое количество воды связывает коллаген, хотя этот белок содержит преимущественно неполярные аминокислоты. Вода, связываясь с пептидными группами, раздвигает вытянутые полипептидные цепи. Однако межцепочечные связи (мостики) не дают молекулам белка отрываться друг от друга и переходить в раствор. При нагревании сырья, содержащего коллаген, межцепочечные мостики в коллагеновых волокнах разрываются и освобожденные полипептидные цепи переходят в раствор. Эта фракция частично гидролизованного растворимого коллагена называется желатиной. Желатина по химическому составу близка к коллагену, легко набухает и растворяется в воде, образуя вязкие жидкости. Характерным свойством желатины является способность к гелеобразованию. Водные растворы желатины широко используются в лечебной практике как плазмозамещающее и кровоостанавливающее средство, а способность к гелеобразованию — при изготовлении капсул в фармацевтической практике.

Факторы, влияющие на растворимость белков. Растворимость разных белков колеблется в широких пределах. Она определяется их аминокислотным составом (полярные аминокислоты придают большую растворимость, чем неполярные), особенностями организации (глобулярные белки, как правило, лучше растворимы, чем фибриллярные) и свойствами растворителя. Например, растительные белки — проламины — растворяются в 60-80%-ном спирте, альбумины — в воде и в слабых растворах солей, а коллаген и кератины нерастворимы в большинстве растворителей.

Стабильность растворам белков придают заряд белковой молекулы и гидратная оболочка. Каждая макромолекула индивидуального белка имеет суммарный заряд одного знака, что препятствует их склеиванию в растворе и выпадению в осадок. Все, что способствует сохранению заряда и гидратной оболочки, облегчает растворимость белка и его устойчивость в растворе. Между зарядом белка (или числом полярных аминокислот в нем) и гидратацией существует тесная связь: чем больше полярных аминокислот в белке, тем больше связывается воды (в расчете на 1 г белка). Гидратная оболочка белка иногда достигает больших размеров, и гидратная вода может составлять до 1/5 его массы.

Правда, некоторые белки гидратируются сильнее, а растворяются хуже. Например, коллаген связывает воды больше, чем многие хорошо растворимые глобулярные белки, но не растворяется. Его растворимости мешают структурные особенности — поперечные связи между полипептидными цепями. Иногда разноименно заряженные группы белка образуют много ионных (солевых) связей внутри молекулы белка или между молекулами белков, что мешает образованию связей между молекулами воды и заряженными группами белков. Наблюдается парадоксальное явление: в белке много анионных или катионных групп, а растворимость его в воде низкая. Межмолекулярные солевые мостики вызывают склеивание молекул белка и их выпадение в осадок.

Нейтральные соли в небольших концентрациях повышают растворимость даже тех белков, которые нерастворимы в чистой воде (например, эвглобулины). Это объясняется тем, что ионы солей, взаимодействуя с противоположно заряженными группами молекул белков, разрушают солевые мостики между молекулами белков. Повышение концентрации солей (увеличение ионной силы раствора) оказывает обратное действие (см. ниже — высаливание).

рН среды влияет на заряд белка, а следовательно, на его растворимость. Наименее устойчив белок в изоэлектрическом состоянии, т. е. когда его суммарный заряд равен нулю. Снятие заряда позволяет молекулам белка легко сближаться, склеиваться и выпадать в осадок. Значит, растворимость и устойчивость белка будут минимальны при рН, соответствующем изоэлектрической точке белка.

Строгой зависимости между температурой и характером растворимости белков не имеется. Одни белки (глобулины, пепсин, фосфорилаза мышц) в водных или солевых растворах с повышением температуры растворяются лучше; другие (альдолаза мышц, гемоглобин и т.д.) хуже.

Если в раствор белка, являющегося полианионом (кислый белок), добавить белок, являющийся поликатионом (основной белок), то они образуют агрегаты. При этом устойчивость вследствие нейтрализации зарядов теряется и белки выпадают в осадок. Иногда эту особенность используют для выделения нужного белка из смеси белков.

Растворы нейтральных солей широко используются не только для повышения растворимости белка, например при выделении его из биологического материала, но и для избирательного осаждения разных белков, т. е. их фракционирования. Процесс осаждения белков нейтральными солевыми растворами называется высаливанием. Характерной особенностью белков, полученных высаливанием, является сохранение ими нативных биологических свойств после удаления соли.

Механизм высаливания состоит в том, что добавляемые анионы и катионы солевого раствора снимают гидратную оболочку белков, являющуюся одним из факторов его устойчивости. Возможно, одновременно происходит и нейтрализация зарядов белка ионами соли, что также способствует осаждению белков.

Эти ряды называются лиотропными.

Сильным высаливающим эффектом в этом ряду обладают сульфаты. На практике для высаливания белков чаще всего применяют сульфат натрия и аммония. Кроме солей белки осаждают органическими водоотнимающими средствами (этанол, ацетон, метанол и др.). Фактически это то же высаливание.

Высаливание широко используют для разделения и очистки белков, поскольку многие белки различаются по размеру гидратной оболочки и величине зарядов. Для каждого из них имеется своя зона высаливания, т. е. концентрация соли, позволяющая дегидратировать и осадить белок. После удаления высаливающего агента белок сохраняет все свои природные свойства и функции.

Денатурация (денативация) и ренатурация (ренативация)

При действии различных веществ, нарушающих высшие уровни организации белковой молекулы (вторичную, третичную, четвертичную) с сохранением первичной структуры, белок теряет свои нативные физико-химические и, главное, биологические свойства. Это явление называется денатурацией (денативацией). Оно характерно только для молекул, имеющих сложную пространственную организацию. Синтетические и природные пептиды не способны к денатурации.

При денатурации разрываются связи, стабилизирующие четвертичную, третичную и даже вторичную структуры. Полипептидная цепь разворачивается и находится в растворе или в развернутом виде, или в виде беспорядочного клубка. При этом теряется гидратная оболочка и белок выпадает в осадок. Однако осажденный денатурированный белок отличается от того же белка, осажденного путем высаливания, так как в первом случае он утрачивает нативные свойства, а во втором сохраняет. Это указывает на то, что механизм действия веществ, вызывающих денатурацию и высаливание, разный. При высаливании сохраняется нативная структура белка, а при денатурации разрушается.

К физическим факторам относятся: температура, давление, механическое воздействие, ультразвуковое и ионизирующее излучение.

Тепловая денатурация белков является наиболее изученным процессом. Она считалась одним из характерных признаков белков. Давно известно, что при нагревании белок свертывается (коагулирует) и выпадает в осадок. Большинство белков термолабильны, однако известны белки, очень устойчивые к нагреванию. Например, трипсин, химотрипсин, лизоцим, некоторые белки биологических мембран. Особой устойчивостью к температуре отличаются белки бактерий, обитающих в горячих источниках. Очевидно, у термостабильных белков тепловое движение полипептидных цепей, вызванное нагреванием, недостаточно для разрыва внутренних связей молекул белка. В изоэлектрической точке белки легче подвергаются тепловой денатурации. Этот прием используется в практической работе. Некоторые белки, наоборот, денатурируют при низкой температуре.

К химическим факторам, вызывающим денатурацию, относятся: кислоты и щелочи, органические растворители (спирт, ацетон), детергенты (моющие средства), некоторые амиды (мочевина, соли гуанидина и т. д.), алкалоиды, тяжелые металлы (соли ртути, меди, бария, цинка, кадмия и т. д.). Механизм денатурирующего действия химических веществ зависит от их физико-химических свойств.

Кислоты и щелочи широко используются в качестве осадителей белков. Многие белки денатурируются при крайних значениях рН — ниже 2 или выше 10-11. Но некоторые белки устойчивы к действию кислот и щелочей. Например, гистоны и протамины не денатурируются даже при рН 2 или рН 10. Крепкие растворы этанола, ацетон тоже оказывают денатурирующее влияние на белки, хотя для некоторых белков эти органические растворители используются как высаливающие агенты.

Тяжелые металлы, алкалоиды издавна применяются как осадители; они образуют прочные связи с полярными группами белков и тем самым разрывают систему водородных и ионных связей.

Особо следует остановиться на мочевине и солях гуанидина, которые в больших коцентрациях (для мочевины 8 моль/л, для гуанидина гидрохлорида 2 моль/л) конкурируют пептидными группами за образование водородных связей. В результате происходит диссоциация на субъединицы у белков с четвертичной структурой, а затем и разворачивание полипептидных цепей. Это свойство мочевины настолько ярко, что его широко используют для доказательства наличия четвертичной структуры белка и значения его структурной организации в осуществлении физиологической функции.

Последнее качество денатурированного белка широко известно. Термическая или иная обработка продуктов, содержащих белки (главным образом мясные), способствует лучшему перевариванию их с помощью протеолитических ферментов желудочно-кишечного тракта. В желудке человека и животных вырабатывается природный денатурирующий агент — соляная кислота, которая, денатурируя белки, помогает их расщеплению ферментами. Однако наличие соляной кислоты и протеолитических ферментов не позволяет применять белковые лекарственные препараты через рот, ибо они денатурируются и тут же расщепляются, теряя биологическую активность.

Заметим также, что денатурирующие вещества, осаждающие белки, используются в биохимической практике с иными целями, чем высаливающие. Высаливание как прием применяется для выделения какого-то белка или группы белков, а денатурация для освобождения от белка смеси каких-либо веществ. Удаляя белок, можно получить безбелковый раствор или устранить действие этого белка.

Долго считалось, что денатурация необратима. Однако в некоторых случаях удаление денатурирующего агента (такие опыты были сделаны при использовании мочевины) восстанавливает биологическую активность белка. Процесс восстановления физико-химических и биологических свойств денатурированного белка называется ренатурацией или ренативацией. Если денатурированный белок (после удаления денатурирующих веществ) вновь самоорганизуется в исходную структуру, то восстанавливается и его биологическая активность.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *