Распределенный впрыск топлива что это
Как работает система распределенного впрыска топлива MPI
Система распределенного (многоточечного) впрыска топлива MPI используется только на бензиновых двигателях и является наиболее популярной в мире. В данной системе каждый цилиндр оснащается индивидуальной форсункой, которая впрыскивает топливо непосредственно перед впускным клапаном. Многоточечный впрыск идеально соответствует высоким экологическим стандартам, а также требованиям, предъявляемым к смесеобразованию в современных двигателях.
Основной принцип работы системы MPI
Обозначение MPI расшифровывается как Multi-point injection, что означает “многоточечный впрыск”. Наиболее часто такая маркировка встречается на европейских автомобилях.
Конструкция системы многоточечного впрыска
Она состоит из следующих элементов:
В такой системе питания воздух из атмосферы проходит через воздушный фильтр, датчик массового расхода воздуха и затем через дроссельную заслонку попадает во впускной коллектор. Далее он распределяется по каналам цилиндров.
В свою очередь, топливо подается при помощи насоса через топливный фильтр и рампу к форсункам. Последние расположены вблизи впускных клапанов цилиндров, что снижает потери топлива и вероятность его оседания во впускном коллекторе. Работу форсунок контролирует ЭБУ двигателя. Количество топлива, которое должно поступить через форсунки, блок управления рассчитывает на основе информации о режимах, нагрузке и оборотах двигателя, а также на основе информации о количестве поступившего в систему воздуха, полученной от целого комплекса датчиков (температуры, давления). В соответствии с расчетами, ЭБУ подает импульсные сигналы на электромагнитные форсунки, приводя их в работу.
Помимо управления режимами работы инжекторов, блок управления проводит регулярную диагностику состояния системы впрыска и при обнаружении неисправностей выдает соответствующий сигнал об ошибке на приборной панели (“Check Engine”).
Режимы работы MPI
В зависимости от режима работы форсунок различают несколько видов системы:
Отличия системы MPI
Многие путают MPI с распределенным впрыском в целом, куда также входит система непосредственного впрыска GDI (FSI, DISI, TSI), при которой подача топлива осуществляется напрямую в каждый цилиндр. Это важное различие, поскольку Multi-point injection предполагает образование топливовоздушной смеси в каналах впускного коллектора перед впускными клапанами.
Помимо этого, двигатели с многоточечным распределенным впрыском являются атмосферными, без использования наддува. А это означает, что такие двигатели имеют менее жесткие требования к качеству топлива.
Преимущества и недостатки многоточечного впрыска
Главными достоинствами системы распределенного (многоточечного) впрыска является более экономичный расход топлива и соответствие требованиям экологических стандартов в сравнении с моновпрыском или карбюратором. С другой стороны, двигатель MPI менее мощный, нежели моторы с непосредственной подачей топлива в цилиндры двигателя. При этом, в сравнении с системами с непосредственным впрыском, отличается менее затратным обслуживанием.
К недостаткам распределенного впрыска можно отнести сложность изготовления, и, как следствие, высокую стоимость. Это также относится к ремонту электронной системы и инжекторов. Для обслуживания и диагностики необходимо специализированное оборудование и высококвалифицированные специалисты.
Для отечественных условий системы многоточечного распределенного впрыска считаются наиболее оптимальными по соотношению стоимости и удобства обслуживания, а также по уровню получаемой мощности и комфорту эксплуатации.
Системы впрыска топлива
В конце 60х-начале 70х годов ХХ века остро встала проблема загрязнения окружающей среды промышленными отходами, среди которых значительную часть составляли выхлопные газы автомобилей. До этого времени состав продуктов сгорания двигателей внутреннего сгорания никого не интересовал. В целях максимального использования воздуха в процессе сгорания и достижения максимально возможной мощности двигателя состав смеси регулировался с таким расчетом, чтобы в ней был избыток бензина. В результате в продуктах сгорания совершенно отсутствовал кислород, однако оставалось несгоревшее топливо, а вредные для здоровья вещества образуются главным образом при неполном сгорании. В стремлении повышать мощность конструкторы устанавливали на карбюраторы ускорительные насосы, впрыскивающие топливо во впускной коллектор при каждом резком нажатии на педаль акселератора, т.е. когда требуется резкий разгон автомобиля. В цилиндры при этом попадает чрезмерное количество топлива, не соответствующее количеству воздуха. В условиях городского движения ускорительный насос срабатывает практически на всех перекрестках со светофорами, где автомобили должны то останавливаться, то быстро трогаться с места. Неполное сгорание имеет место также при работе двигателя на холостых оборотах, а особенно при торможении двигателем. При закрытом дросселе воздух проходит через каналы холостого хода карбюратора с большой скоростью, всасывая слишком много топлива. Из-за значительного разрежения во впускном трубопроводе в цилиндры засасывается мало воздуха, давление в камере сгорания остается к концу такта сжатия сравнительно низким, процесс сгорания чрезмерно богатой смеси проходит медленно, и в выхлопных газах остается много несгоревшего топлива. Описанные режимы работы двигателя резко повышают содержание токсических соединения в продуктах сгорания.
Стало очевидно, что для понижения вредных для жизнедеятельности человека выбросов в атмосферу надо кардинально менять подход к конструированию топливной аппаратуры.
СИСТЕМЫ ВПРЫСКА ТОПЛИВА
Для снижения вредных выбросов в систему выпуска было предложено устанавливать каталитический нейтрализатор отработавших газов. Но катализатор эффективно работает только при сжигании в двигателе так называемой нормальной топливо-воздушной смеси (весовое соотношение воздух/бензин 14,7:1). Любое отклонение состава смеси от указанного приводило к падению эффективности его работы и ускоренному выходу из строя. Для стабильного поддержания такого соотношения рабочей смеси карбюраторные системы уже не подходили. Альтернативой могли стать только системы впрыска. Первые системы были чисто механическими с незначительным использованием электронных компонентов. Но практика использования этих систем показала, что параметры смеси, на стабильность которых рассчитывали разработчики, изменяются по мере эксплуатации автомобиля. Этот результат вполне закономерен, учитывая износ и загрязнение элементов системы и самого двигателя внутреннего сгорания в процессе его службы. Встал вопрос о системе, которая смогла бы сама себя корректировать в процессе работы, гибко сдвигая условия приготовления рабочей смеси в зависимости от внешних условий. Выход был найден следующий. В систему впрыска ввели обратную связь — в выпускную систему, непосредственно перед катализатором, поставили датчик содержания кислорода в выхлопных газах, так называемый лямбда-зонд. Данная система разрабатывалась уже с учетом наличия такого основополагающего для всех последующих систем элемента, как электронный блок управления (ЭБУ). По сигналам датчика кислорода ЭБУ корректирует подачу топлива в двигатель, точно выдерживая нужный состав смеси.
На сегоднящний день инжекторый (или, говоря по-русски, впрысковый) двигатель практически полностью заменил устаревшую карбюраторную систему. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).
Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:
точное дозирование топлива и, следовательно, более экономный его расход.
снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов.
увеличение мощности двигателя примерно на 7-10%. Происходит за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя.
улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси.
легкость пуска независимо от погодных условий.
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ (на примере электронной системы распределенного впрыска)
В современных впрысковых двигателях для каждого цилиндра предусмотрена индивидуальная форсунка. Все форсунки соединяются с топливной рампой, где топливо находится под давлением, которое создает электробензонасос. Количество впрыскиваемого топлива зависит от продолжительности открытия форсунки. Момент открытия регулирует электронный блок управления (контроллер) на основании обрабатываемых им данных от различных датчиков.
Датчик массового расхода воздуха служит для расчета циклового наполнения цилиндров. Измеряется массовый расход воздуха, который потом пересчитывается программой в цилиндровое цикловое наполнение. При аварии датчика его показания игнорируются, расчет идет по аварийным таблицам.
Датчик положения дроссельной заслонки служит для расчета фактора нагрузки на двигатель и его изменения в зависимости от угла открытия дроссельной заслонки, оборотов двигателя и циклового наполнения.
Датчик температуры охлаждающей жидкости служит для определения коррекции топливоподачи и зажигания по температуре и для управления электровентилятором. При аварии датчика его показания игнорируются, температура берется из таблицы в зависимости от времени работы двигателя.
Датчик положения коленвала служит для общей синхронизации системы, расчета оборотов двигателя и положения коленвала в определенные моменты времени. ДПКВ — полярный датчик. При неправильном включении двигатель заводится не будет. При аварии датчика работа системы невозможна. Это единственный «жизненно важный» в системе датчик, при котором движение автомобиля невозможно. Аварии всех остальных датчиков позволяют своим ходом добраться до автосервиса.
Датчик кислорода предназначен для определения концентрации кислорода в отработавших газах. Информация, которую выдает датчик, используется электронным блоком управления для корректировки количества подаваемого топлива. Датчик кислорода используется только в системах с каталитическим нейтрализатором под нормы токсичности Евро-2 и Евро-3 (в Евро-3 используется два датчика кислорода- до катализатора и после него).
Датчик детонации служит для контроля за детонацией. При обнаружении последней ЭБУ включает алгоритм гашения детонации, оперативно корректируя угол опережения зажигания.
Здесь перечислены только некоторые основные датчики, необходимые для работы системы. Комплектации датчиков на различных автомобилях зависят от системы впрыска, от норм токсичности и пр.
Про результатам опроса определенных в программе датчиков, программа ЭБУ осуществляет управление исполнительными механизмами, к которым относятся: форсунки, бензонасос, модуль зажигания, регулятор холостого хода, клапан адсорбера системы улавливания паров бензина, вентилятор системы охлаждения и др. (все опять же зависит от конкретной модели)
Из всего перечесленного, возможно, не все знают, что такое адсорбер. Адсорбер является элементом замкнутой цепи рециркуляции паров бензина. Нормами Евро-2 запрещен контакт вентиляции бензобака с атмосферой, пары бензина должны собираться (адсорбироваться) и при продувке посылаться в цилиндры на дожиг. На неработающем двигателе пары бензина попадают в адсорбер из бака и впускного коллектора, где происходит их поглощение. При запуске двигателя адсорбер по команде ЭБУ продувается потоком воздуха, всасываемого двигателем, пары увлекаются этим потоком и дожигаются в камере сгорания.
ТИПЫ
В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный или моновпрыск (одна форсунка во впускном коллекторе на все цилиндры), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсунками непосредственно в цилиндры, как у дизелей).
Одноточечный впрыск проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска. Немаловажно и то, что под моновпрыск легко адаптируются карбюраторные двигатели почти без конструктивных переделок или технологических изменений в производстве. У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.
Системы одноточечного впрыска, безусловно, являлись шагом вперед по сравнению с карбюраторными системами питания, но уже не удовлетворяют современным требованиям.
Более совершенными являются системы многоточечного впрыска, в которых подача топлива к каждому цилиндру осуществляется индивидуально. Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов. Основные преимущества распределенного впрыска:
возможность автоматической настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности автомобиль разгоняется гораздо быстрее;
бензин впрыскивается вблизи впускного клапана, что существенно снижает потери на оседание во впускном коллекторе и позволяет осуществлять более точную регулировку подачи топлива.
Непосредственный впрыск как очередное и эффективное средство в деле оптимизации сгорания смеси и повышения КПД бензинового двигателя реализует простые принципы. А именно: более тщательно распыляет топливо, лучше перемешивает с воздухом и грамотней распоряжается готовой смесью на разных режимах работы двигателя. В итоге двигатели с непосредственным впрыском потребляют меньше топлива, чем обычные «впрысковые» моторы (в особенности при спокойной езде на невысокой скорости); при одинаковом рабочем объеме они обеспечивают более интенсивное ускорение автомобиля; у них чище выхлоп; они гарантируют более высокую литровую мощность за счет большей степени сжатия и эффекта охлаждения воздуха при испарении топлива в цилиндрах. В то же время они нуждаются в качественном бензине с низким содержанием серы и механических примесей, чтобы обеспечить нормальную работу топливной аппаратуры.
А как раз главное несоответствие между ГОСТами, ныне действующими в России и Украине, и евростандартами- повышенное содержание серы, ароматических углеводородов и бензола. Например, российско-украинский стандарт допускает наличие 500 мг серы в 1 кг топлива, тогда как «Евро-3»- 150 мг, «Евро-4»- лишь 50 мг, а «Евро-5»- всего 10 мг. Сера и вода способны активизировать коррозионные процессы на поверхности деталей, а мусор является источником абразивного износа калиброванных отверстий форсунок и плунжерных пар насосов. В результате износа снижается рабочее давление насоса и ухудшается качество распыления бензина. Все это отражается на характеристиках двигателей и равномерности их работы.
Первой применила двигатель с непосредственным впрыском на серийном автомобиле компания Mitsubishi. Поэтому рассмотрим устройство и принципы действия непосредственного впрыска на примере двигателя GDI (Gasoline Direct Injection). Двигатель GDI может работать в режиме сгорания сверхобедненной топливовоздушной смеси: соотношение воздуха и топлива по массе до 30-40:1. Максимально возможное для традиционных инжекторных двигателей с распределенным впрыском соотношение равно 20-24:1 (стоит напомнить, что оптимальный, так называемый стехиометрический, состав — 14,7:1) — если избыток воздуха будет больше, переобедненная смесь просто не воспламенится. На двигателе GDI распыленное топливо находится в цилиндре в виде облака, сосредоточенного в районе свечи зажигания. Поэтому, хотя в целом смесь переобедненная, у свечи зажигания она близка к стехиометрическому составу и легко воспламеняется. В то же время, обедненная смесь в остальном объеме имеет намного меньшую склонность к детонации, чем стехиометрическая. Последнее обстоятельство позволяет повысить степень сжатия, а значит увеличить и мощность, и крутящий момент. За счет того, что при впрыскивании и испарении в цилиндр топлива, воздушный заряд охлаждается — несколько улучшается наполнение цилиндров, а также снова снижается вероятность возникновения детонации.
Основные конструктивные отличия GDI от обычного впрыска:
Топливный насос высокого давления (ТНВД). Механический насос (подобный ТНВД дизельного двигателя) развивает давление в 50 бар (у инжекторного двигателя электронасос в баке создает в магистрали давление около 3-3,5 бар).
Форсунки высокого давления с вихревыми распылителями создают форму топливного факела, в соответствии с режимом работы двигателя. На мощностном режиме работы впрыск происходит на режиме впуска и образуется конический топливовоздушный факел. На режиме работы на сверхбедных смесях впрыск происходит в конце такта сжатия и формируется компактный топливовоздушный факел, который вогнутое днище поршня направляет прямо к свече зажигания.
Поршень. В днище особой формы сделана выемка, при помощи которой топливо-воздушная смесь направляется в район свечи зажигания.
Впускные каналы. На двигателе GDI применены вертикальные впускные каналы, которые обеспечивают формирование в цилиндре т.н. «обратного вихря», направляя топливовоздушную смесь к свече и улучшая наполнение цилиндров воздухом (у обычного двигателя вихрь в цилиндре закручен в противоположную сторону).
Режимы работы двигателя GDI
Что такое GDI и чем он хуже MPI – прямой впрыск против распределенного
Добрый день, дорогие друзья. Сегодня сравним двигатели MPI с GDI, распределенный впрыск топлива с непосредственным. Выясним, какая система лучше и надежнее для простых автовладельцев.
Что значит двигатель GDI
Это система непосредственного или прямого впрыска топлива в мотор. В отличие от MPI, бензин впрыскивается под высоким давлением непосредственно в камеру сгорания. В отличие от MPI – распределенного впрыска, где бензин впрыскивается во впускной коллектор и там смешивается с топливом. Полученная смесь через впускной клапан всасывается в цилиндр.
В первом случае, форсунки вкручены непосредственно в блок цилиндров или головку. Во втором – в трубу впускного коллектора.
В двигателях GDI бензин и воздух в камеру сгорания подаются отдельно, смешивание воздуха с топливом происходит непосредственно в моторе. Здесь тоже есть нюансы. Подача горючего может происходить несколькими способами – гомогенным и послойным. В распределенном впрыске подача топлива происходит одним способом.
Хочется отметить, что систему непосредственного впрыска называть GDI – правильно отчасти. Потому что каждый производитель, для своих моторов использует свою аббревиатуру.
Например, у Ауди – TFSI, VW – FSI, у БМВ – HPI, Мерседес моторы GDI называет CGI. Первыми, кто внедрил эту систему, были Митсубиси. Поэтому в обиход плотно прижился GDI впрыск.
Главной особенности «Джидай» двигателей является обедненная топливная смесь. Помните, для нормального горения бензина соотношение воздуха к топливу должно быть 14,7 к 1? В системах непосредственного впрыска это соотношение может менять от 37 к 1 и выше в разных режимах.
Такое соотношение обеспечивает:
Чем еще отличаются две системы впрыска
Кроме расположения форсунки, силовые агрегаты с непосредственным впрыском имеют ряд отличий от MPI.
В состав системы включен топливный насос высокого давления. Так же, как и в дизельных двигателях, он предназначен для впрыска топлива в камеру сгорания под высоким давлением – от 50 до 200 Бар. Чтобы подать бензин к ТНВД в топливном баке установлен еще один насос низкого давления. Он качает бензин из бензобака к ТНВД под давлением 3-5,8 Бар.
В непосредственном впрыске используется только один насос. Он питается от электричества бортовой сети и создает давление до 6 Бар.
ТНВД в системах GDI механический. Он приводится в работу за счет кулачка распределительного вала. В корпусе насосе расположен регулятор давления топлива. В зависимости от режимов работы меняется давление бензина в топливной рампе.
Топливные форсунки
В «джидай» моторах форсунки рассчитаны на большое давление. По этой причине в них есть ряд конструктивных изменений.
Нужно следить за состоянием уплотнительных колец. В них их три штуки. Больший «геморрой» доставляет тефлоновое кольцо, которое находиться непосредственно на наконечнике форсунки. Его замена требует определенных навыков или дополнительных денег, если обратитесь в сервис.
Распылитель имеет более тонкие отверстия, используя некачественное топливо, они быстро засоряются. Что приводит к перебоям в работе двигателя GDI. Просто промыть их на стенде для MPI форсунок, невозможно, необходимо большое давление, а там его нет.
Какая из систем лучше для простого водителя
Минусы «Джидай» моторов
Плюсы
Подведем итог
Я являюсь противником технологии прямого впрыска бензина. Да, эти моторы экономичнее обычных инжекторных ДВС, более мощные и эффективные. Но они более капризные и дорогие в обслуживании. Залили плохое топливо – выкинул форсунки или ТНВД. Чаще засераются впускные клапаны и коллектор – перебои в работе силового агрегата и потеря мощности. Надо чаще чистить, а это лишние затраты.
Многие говорят: «Двигатели джидай дают вам деньги в долг своей экономичностью и производительностью». То есть, приходит время ТО, и вы их ему возвращаете сполна.
Поэтому, выводу делайте сами. Я для себя их сделал – лучше купить автомобиль с распределенным впрыском бензина, чем с GDI мотором. Это сэкономит мне нервы, время и деньги на обслуживание и ремонт топливной системы.
Добавить комментарий Отменить ответ
Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.
Теория и практика впрыска: прямой против распределенного. Какой выбрать двигатель, чтобы не разориться
Если спросить, что происходит, когда водитель нажимает или отпускает педаль «газа», скорее всего, услышите от владельцев бензиновых автомобилей, что при этом увеличивается или уменьшается подача топлива в мотор. Однако назвать правильным такой ответ можно только с большой натяжкой.
В действительности же, воздействуя на педаль «газа», водитель уменьшает или увеличивает подачу воздуха в цилиндры. Топлива же будет подано ровно столько, сколько требуется для приготовления смеси воздуха и бензина, заданной программой управления для конкретного режима работы двигателя и его фактического температурного состояния.
У карбюраторных моторов, давно ставших экспонатами политехнических музеев, количество подаваемого бензина и вовсе определялось разряжением воздуха в пространстве за дроссельной заслонкой, положение которой задавалось нажатием на педаль «газа». Точность такого способа дозирования топлива была невысока, что сказывалось на экономичности карбюраторных двигателей, количестве вредных выбросов в окружающую среду и в конечном итоге сделало карбюраторы достоянием истории.
На смену пришел впрыск, где подача бензина самотеком из жиклеров под действием разряжения воздуха была заменена распылением с помощью форсунок, к которым топливо поступает под давлением, развиваемым топливным насосом.
На самом ли деле прямой впрыск настолько хорош, что делает поражение MPI неизбежным? Чтобы разобраться в этом вопросе, сравним обе системы питания.
И там и там в отличие от моновпрыска каждый цилиндр двигателя обслуживается отдельной форсункой, но при распределенном впрыске форсунки распыляют бензин во впускной коллектор.
При прямом впрыске бензин подается непосредственно в камеру сгорания цилиндра. Это главное, что отличает моторы, в зависимости от производителя помечаемые индексами GDI (Mitsubishi), FSI (Volkswagen), HPi (Peugeot), CGI (Mercedes-Benz) и так далее, от двигателей MPI.
Что же хорошего сулит подача бензина прямо внутрь цилиндра? Как ни странно, ничего, если подойти к этому вопросу с точки зрения конструкции двигателя. Проблема состоит в том, что при прямом впрыске на испарение бензина и перемешивание его паров с воздухом отводится примерно в 10 раз меньше времени, чем когда бензин распыляется во впускной коллектор, а в цилиндры поступает уже в смеси с воздухом после того, как открылись впускные клапана.
Как в условиях столь короткого промежутка времени, отводимого при прямом впрыске на смесеобразование, добиться, чтобы смесь получилась качественной, ведь именно от этого зависит, каким будет результат последующего сгорания?
Отсюда другие отличия GDI, FSI, HPi, CGI и иже с ними от MPI. Во-первых, давление, с которым форсунка при прямом впрыске распыляет бензин, в десятки раз превышает давление, действующее в системах питания с распределенным впрыском (порядка 50-120 бар против 3-4). Это предполагает наличие у двигателей с прямым впрыском топливного насоса высокого давления, в котором нет необходимости при распределенном впрыске.
Но и это еще не все. Важнейшую роль в организации рабочего процесса в моторах с прямым впрыском играет движение воздуха и порции впрыснутого бензина внутри цилиндра. Именно ради этого днище поршней в двигателях с прямым впрыском приобрело сложную профилированную форму, которая также принципиально отличает их от поршней MPI-моторов.
Той же цели служат и впускные каналы в коллекторах двигателей с прямым впрыском. В GDI, FSI и подобных им моторах поток воздуха из впускных каналов либо способствует так называемому послойному смесеобразованию, когда пригодным для нормального сгорания становится только небольшое облако смеси, расположенное возле свечи зажигания, либо разрушает расслоение, когда нужно, чтобы смесь стала стехиометрической. В двигателях MPI впускные каналы предназначены лишь для впуска бензовоздушной смеси в цилиндры, поэтому здесь нет необходимости придавать каналам винтовую форму, оснащать их заслонками, закрытыми или открытыми в зависимости от режима работы двигателя, как это делается при прямом впрыске.
Наш вердикт
Производители себе на уме, но если спросить у белорусских владельцев бензиновых автомобилей, какой мотор лучше, MPI или FSI, скорее всего, услышим в ответ дифирамбы в адрес первого и ничего хорошего о втором. И вот вам правда жизни: оценка системы питания, которой теоретики и аналитики прочат безоговорочную победу, может измениться на противоположную, если учесть, чем в наших условиях эксплуатации оборачивается ее сложность.
Сергей БОЯРСКИХ
Фото автора
ABW.BY
Благодарим за консультации и помощь в организации фотосъемки «Ресурсный центр» на базе автомеханического колледжа имени академика М.С.Высоцкого