Реабсорбция в почках что это
Реабсорбция в почках что это
В предшествующих статьях мы обсудили основные механизмы, благодаря которым вода и растворенные в ней вещества перемещаются через мембрану канальцев. Используя эти сведения, теперь можно обсудить другие особенности различных сегментов канальцевой системы, позволяющие им выполнять специфические выделительные функции. При этом особое внимание уделим только тем из них, которые характеризуют реабсорбцию ионов Na+, Сl- и воды количественно. Реабсорбцию и секрецию других веществ в различных частях канальцевой системы нефрона рассмотрим в следующих главах.
а) Реабсорбция в проксимальном канальце. Перед тем как первичная моча достигнет петли Генле проксимальный каналец реабсорбирует в норме около 65% прошедших через почечный фильтр воды и натрия, а также в чуть меньшем количестве — ионов Сl-. Данные показатели могут изменяться при различных физиологических условиях. Этот вопрос будет обсужден далее.
Ультраструктура клетки и главные особенности транспорта в проксимальном канальце. Проксимальные канальцы реабсорбируют около 65% натрия, хлора, бикарбонатов, калия, а также почти всю глюкозу и аминокислоты, попавшие в первичную мочу. Здесь также происходит секреция в просвет канальцев органических кислот, оснований и протонов
Проксимальные канальцы обладают способностью к значительной реабсорбции благодаря активным и пассивным механизмам. Высокая способность проксимальных канальцев к реабсорбции обусловлена определенными структурными особенностями эпителиальных клеток (для облегчения понимания просим изучить рисунок выше). В эпителиоцитах — высокий уровень метаболизма, они содержат большое число митохондрий, необходимых для возможного осуществления активного транспорта. Кроме того, клетки канальцев оснащены хорошо развитой щеточной каемкой на апикальной стороне мембраны, а также широким лабиринтом межклеточных пространств и каналов на базальной стороне клеток. Все это вместе увеличивает площадь поверхности на апикальной и базолатеральных сторонах клеток, что способствует быстрому транспорту ионов Na + и других веществ.
Большая площадь поверхности мембраны эпителия в области щеточной каемки изобилует множеством транспортных белков, на долю которых приходится транспорт из просвета канальцев значительного количества ионов Na+ и связанных с ними посредством котранспорта многочисленных органических питательных веществ, например аминокислот и глюкозы. Оставшиеся в просвете канальца ионы Na+ перемещаются из канальцев в клетку с помощью контртранспорта в обмен на другие вещества, в особенности на протоны. Канальцевая секреция протонов является важным этапом удаления бикарбонатов из просвета канальцев путем химического объединения Н + с НСО3 2 и формирования Н2СО3, диссоциирующей затем на Н2О и СО2.
Несмотря на то, что основную движущую силу для реабсорбции ионов натрия, хлора и воды в проксимальном канальце создает АТФ-аза Na+/K+-Hacoca, механизмы транспорта для этих ионов в начальных и более удаленных от клубочка частей проксимального канальца несколько отличаются.
В начальных отделах канальца происходит реабсорбция натрия благодаря котранспорту вместе с глюкозой, аминокислотами и другими растворенными веществами. Однако в удаленной от клубочка части остается лишь небольшое количество перечисленных соединений. Здесь натрий реабсорбируется главным образом с ионами Сl-. Поскольку в начальном сегменте реабсорбция натрия происходит преимущественно с глюкозой, бикарбонатом и другими органическими ионами, содержание хлора по мере продвижения жидкости по канальцу возрастает со 105 мэкв/л до 140 мэкв/л во второй его половине, поэтому в данном сегменте под действием градиента концентрации происходит перемещение ионов Сl- в межклеточную жидкость через межклеточные соединения.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Канальцевая реабсорбция
Для расчета необходимы результаты и данные:
Информация об анализе
Канальцевая реабсорбция
В строении почек можно выделить клубочки и канальцы. Для оценки фильтрующей (очистительной) способности клубочков почек используют расчет показателя скорости клубочковой фильтрации. Ее можно посчитать по клиренсу креатинина (вещества, образующегося в мышцах и полностью выводимого почками) в пробе Реберга.
Скорость клубочковой фильтрации и канальцевая реабсорбция по-разному реагируют при заболеваниях. Что может косвенно подсказать врачу преимущественное место поражения почек. При гломерулонефрите СКФ снижается быстрее, чем канальцевая реабсорбция, т.к. преимущественно поражен фильтрующий аппарат почек. При пиелонефритах чаще случается наоборот, т.к. при хроническом течении болезни поражаются дистальные отделы канальцев.
Для проведения анализа используют мочу, собранную за сутки и кровь, сданную в конце сбора мочи. По соотношению измеренных показателей креатинина в моче и креатинина в сыворотке крови, с учетом минутного диуреза можно рассчитать скорость клубочковой фильтрации.
Минутный диурез – это объем мочи, выделенной за одну минуту. Этот показатель зависит от указанного вами объема суточной мочи. Поэтому важно собрать всю мочу за 24 часа, измерить общий объем и предоставлять правильные данные в лабораторию.
Канальцевая реабсорбция рассчитывается с учетом результатов СКФ и минутного диуреза и выражается в %.
Снижение канальцевой реабсорбции может возникать при:
Интерпретация результатов исследования «Канальцевая реабсорбция»
Интерпретация результатов анализов носит информационный характер, не является диагнозом и не заменяет консультации врача. Референсные значения могут отличаться от указанных в зависимости от используемого оборудования, актуальные значения будут указаны на бланке результатов.
Итак, почему без сомнений Lab4U?
Мы работаем с 2012 года в 26 городах России и выполнили уже более 1 000 000 анализов.
В лаборатории внедрена система TrakCare LAB, которая автоматизирует лабораторные исследования и сводит к минимуму влияние человеческого фактора.
Команда Lab4U делает все, чтобы сдавать анализы было просто, удобно, доступно и понятно. Сделайте Lab4U своей постоянной лабораторией.
Рекомендации по приему препаратов, содержащих колекальциферол (Витамин D3)
Расчет проводится для лиц старше 18 лет. Помните, что интерпретация результатов носит информационный характер, не является диагнозом и не заменяет консультации врача.
Сдайте анализы со скидкой до 50% в медицинской онлайн-лаборатории Lab4U
Добавьте к заказу анализы
Выберите дату и время сдачи
Оформите и оплатите заказ
Сдайте анализы без очереди
Получите результаты по эл. почте
Выберите город
Годовой абонемент
Годовой абонемент входит в состав первого заказа и дает возможность год Вам и членам Вашей семьи сдавать анализы в два раза дешевле. Результаты всех анализов бессрочно будут храниться в личном кабинете. Подробнее
Мочевыделительная система
Выделение
К органам, выполняющим функции выделения, относятся: почки, мочеточники, мочевой пузырь, мочеиспускательный канал, а также легкие, желудочно-кишечный тракт, кожа.
Небольшая часть мочевины и мочевой кислоты, а также лекарства выводятся вместе с секретом желез желудочно-кишечного тракта. Потовые железы кожи выделяют мочевую кислоту, соли, воду, мочевину. В процессе дыхания из легких улетучивается углекислый газ, вода, алкоголь, эфиры.
Почки
Функции почек
Из организма удаляется мочевина, мочевая кислота, соли аммиака. Напомню, что мочевина образуется не в почках, а в печени, поэтому почки в данном случае играют роль фильтра.
Регулируют число эритроцитов, вырабатывая гормон эритропоэтин, который стимулирует образование эритроцитов в красном костном мозге.
Выделительная и кровеносная системы очень тесно взаимосвязаны, в чем мы убедимся по ходу изучения выделительной системы.
Нефрон
Запомните, что в основе мочеобразования лежат три процесса: фильтрация, реабсорбция (вторичное всасывание) и секреция. Изучая их, мы поймем, как функционирует нефрон, и разберем его строение.
Не могу ни акцентировать ваше внимание на том факте, что в первичной моче оказывается очень много нужного и полезного нашему организму. Вдумайтесь: через фильтр профильтровывается не только мочевина, но и глюкоза, вода, витамины, минеральные соли. Потерять такие ценные вещества для организма было бы большой оплошностью, и следующий этап исправляет допущенную организмом «ошибку» при фильтрации.
Мы добрались до третьего финального этапа мочеобразования. На этапе секреции происходит транспорт веществ из крови (капилляров, оплетающих канальцы нефрона) в просвет канальцев нефрона.
В результате реабсорбции и секреции из первичной мочи образуется вторичная, объем которой составляет 1-1,5 литра в сутки.
Вторичная моча через дистальные канальцы поступает в собирательные трубочки, куда таким же путем открываются дистальные канальцы многих других нефронов. Собирательные трубочки открываются на верхушках почечных пирамид, из низ выделяется моча и поступает в малые, затем в большие почечные чашечки, лоханку и далее в мочеточник.
Регуляция эритроцитопоэза и артериального давления
При многих болезнях почек эритропоэтин в виде лекарственного препарата применяют, чтобы добиться увеличения числа эритроцитов и устранить анемию (малокровие).
Регуляция работы почек
Заболевания
Хорошо зная три основных процесса: фильтрацию, реабсорбцию и секрецию, вы легко сможете предположить, на каком из этих этапов возникло нарушение работы почек. Эффективность работы почек и их состояние можно легко оценить по анализу мочи. Сейчас вам следует ненадолго представить себя врачом нефрологом 😉
Приходит заключение из лаборатории. В моче пациента найдены белок, кровь (эритроциты), гной (лейкоциты). Вам известно, что форменные элементы крови и крупные белки в норме не проходят через «сито» на этапе фильтрации и не должны обнаруживаться в моче. Таким образом, патология локализуется в почечном тельце.
Следующее заключение, которое вам предстоит изучить, выглядит по-другому. Гноя, крови и белков в моче не обнаружено, однако присутствует глюкоза (сахар). Такая находка может быть признаком сахарного диабета.
На схеме ниже вы можете наглядно увидеть симптомы, которые сопровождают сахарный диабет. Этиологию (причины) и патогенез (механизм развития) сахарного диабета мы изучим, когда будем говорить об эндокринной системе.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Водно-электролитный обмен в организме здорового человека: принципы регуляции
Регуляция водно-солевого обмена, как и большинство физиологических регуляций, включает афферентное, центральное и эфферентное звенья. Афферентное звено представлено массой рецепторных аппаратов сосудистого русла, тканей и органов, воспринимающих сдвиги осмотического давления, объема жидкостей и их ионного состава. В результате, в центральной нервной системе создается интегрированная картина состояния водно-солевого баланса в организме. Так, при увеличении концентрации электролитов и уменьшении объема циркулирующей жидкости (гиповолемии) появляется чувство жажды, а при увеличении объема циркулирующей жидкости (гиперволемии) оно уменьшается. Следствием центрального анализа является изменение питьевого и пищевого поведения, перестройка работы желудочно-кишечного тракта и системы выделения (прежде всего функции почек), реализуемая через эфферентные звенья регуляции. Последние представлены нервными и, в большей мере, гормональными влияниями. Увеличение объема циркулирующей жидкости за счет повышенного содержания воды в крови (гидремия) может быть компенсаторным, возникающим, например, после массивной кровопотери. Гидремия с аутогемодиллюцией представляет собой один из механизмов восстановления соответствия объема циркулирующей жидкости емкости сосудистого русла. Патологическая гидремия является следствием нарушения водно-солевого обмена, например при почечной недостаточности и др. У здорового человека может развиться кратковременная физиологическая гидремия после приема больших количеств жидкости.
Гуморальная регуляция водно-электролитного баланса в организме осуществляется следующими гормонами:
— антидиуретический гормон (АДГ, вазопрессин), воздействует на собирательные трубочки и дистальные канальцы почек, увеличивая реабсорбцию воды;
— натриуретический гормон (предсердный натриуретический фактор, ПНФ, атриопептин), расширяет приносящие артериолы в почках, что увеличивает почечный кровоток, скорость фильтрации и экскрецию Na+; ингибирует выделение ренина, альдостерона и АДГ;
— ренин-ангиотензин-альдостероновая система стимулирует реабсорбцию Na+ в почках, что вызывает задержку NaCl в организме и повышает осмотическое давление плазмы, что определяет задержку выведения жидкости.
— паратиреоидный гормон увеличивает абсорбцию калия почками и кишечником и выведение фосфатов и увеличение реабсорбции кальция.
Содержание натрия и организме регулируется в основном почками под контролем ЦНС через специфические натриорецепторы. реагирующие на изменение содержания натрия в жидкостях тела, а также волюморецепторы и осморецепторы, реагирующие на изменение объема циркулирующей жидкости и осмотического давления внеклеточной жидкости соответственно. Содержание натрия в организме контролируется ренин-ангиотензинной системой, альдостероном, натрийуретическими факторами. При уменьшении содержания воды в организме и повышении осмотического давления крови усиливается секреция вазопрессина (антидиуретического гормона), который вызывает увеличение обратною всасывания воды в почечных канальцах. Увеличение задержки натрия почками вызывает альдостерон, а усиление выведения натрия — натрийуретические гормоны, или натрийуретические факторы (атриопептиды, простагландины, уабаинподобное вещество).
Состояние водно-солевого обмена в значительной степени определяет содержание ионов Cl- во внеклеточной жидкости. Из организма ионы хлора выводятся в основном с мочой, желудочным соком, потом. Количество экскретируемого хлорида натрия зависит от режима питания, активной реабсорбции натрия, состояния канальцевого аппарата почек, кислотно-щелочного состояния. Обмен хлора в организме пассивно связан с обменом натрия и регулируется теми же нейрогуморальными факторами. Обмен хлоридов тесно связан с обменом воды: уменьшение отеков, рассасывание транссудата, многократная рвота, повышенное потоотделение и др. сопровождаются увеличением выведения ионов хлора из организма.
Главные регуляторы обмена кальция и фосфора в организме: витамин D, паратгормон и кальцитонин. Витамин D (в результате преобразований в печени образуется витамин D3, в почках — кальцитриол) увеличивает всасывание кальция в пищеварительном тракте и транспорт кальция и фосфора к костям. Паратгормон выделяется при снижении уровня кальция в сыворотке крови, высокий же уровень кальция тормозит образование паратгормона. Паратгормон способствует повышению содержания кальция и снижению концентрации фосфора в сыворотке крови. Кальций резорбируется из костей, также увеличивается его всасывание в пищеварительном тракте, а фосфор удаляется из организма с мочой. Паратгормон также необходим для образования активной формы витамина D в почках. Увеличение уровня кальция в сыворотке крови способствует выработке кальцитонина. В противоположность паратгормону он вызывает накопление кальция в костях и снижает его уровень в сыворотке крови, уменьшая образование активной формы витамина D в почках. Увеличивает выделение фосфора с мочой и снижает его уровень в сыворотке крови.
Статья добавлена 31 мая 2016 г.
Реабсорбция в почках что это
При сравнении состава и количества первичной и конечной мочи выявляется, что в канальцах нефрона происходит процесс обратного всасывания воды и веществ, профильтровавшихся в клубочках, что необходимо для поддержания их внешнего баланса. Этот процесс называется канальцевой реабсорбцией и в зависимости от отдела канальцев, где он происходит, различают реабсорбцию проксимальную и дисталъную. В процессе реабсорбции вода и вещества из просвета канальцев через люминальную мембрану поступают в цитоплазму клеток эпителия, затем через базолате-ральную мембрану выносятся из клеток эпителия в интерстициальное пространство, после чего поступают в перитубулярные (околоканальце-вые) капилляры. Такой путь реабсорбции носит название трансцеллюляр-ного, в его основе лежат общие механизмы транспорта веществ через плазматические мембраны. Кроме того, возможен путь реабсорбции через плотные соединения между клетками эпителия посредством простой диффузии или переносом вещества вместе с растворителем, что носит название парацеллюлярного пути реабсорбции. Реабсорбция представляет собой транспорт веществ из мочи в лимфу и кровь, и в зависимости от механизма вьщеляют пассивный, первично и вторично активный транспорт.
Рис. 14.7. Почечные процессы, обеспечивающие поддержание баланса натрия. Прямые стрелки и цифры — реабсорбция и экскреция натрия в разных отделах нефрона, СКФ — скорость клубочковой фильтрации. При поступлени в сутки 155 ммоль натрия в организм, фильтруется в мочу за сутки 25 200 ммоль, из которых реабсорбируется 25 050 ммоль, в том числе 2/3 (67 %) в проксимальном отделе канальцев, а 1/3 (33 %) — в дистальном отделе. В результате за сутки с мочой выделяется 150 ммоль натрия. Оставшиеся 5 ммоль от поступившего количества натрия экскретируются из организма с калом и потом.
Проксимальная реабсорбция обеспечивает полное всасывание ряда веществ первичной мочи — глюкозы, белка, аминокислот и витаминов. В проксимальном отделе канальцев всасывается 2/з профильтровавшихся воды и ионов натрия (рис. 14.7), большие количества ионов калия, двухвалентных катионов, анионов хлора, бикарбоната, фосфата, а также мочевая кислота и мочевина. К концу проксимального отдела в его просвете остается только 1/3 объема ультрафильтрата, и, хотя его состав из-за неодинаковой реабсорбции разных компонентов уже существенно отличается от плазмы крови, осмотическое давление первичной мочи остается таким же, как в плазме.
Рис. 14.8. Локализация в нефроне и участие в транспорте воды через эпителий почечных канальцев аквапоринов (водных каналов) разных типов (AQP 1—4). AQP1 — водные каналы, постоянно локализованные в проксимальных извитых канальцах и нисходящем отделе петли Генле, обеспечивают трансэпителиальный транспорт воды из просвета канальцев, т. е. проксимальную реабсорбцию воды. AQP2— вазопрессинозависимый тип аквапоринов. Эти водные каналы встраиваются в люминальную мембрану главных клеток собирательных трубочек только при наличии вазопрессина, обеспечивая зависимую от вазопрессина дистальную реабсорбцию воды и концентрирование мочи. AQP3 и AQP4— водные каналы, постоянно локализованные в базолатеральных мембранах главных клеток эпителия собирательных трубочек, обеспечивают транспорт воды из эпителиальных клеток в интерстиций мозгового вещества.
Эпителий проксимального канальца хорошо проницаем для воды, благодаря наличию в апикальной мембране водных каналов, образованных особыми белковыми молекулами аквапоринами. В структурах нефрона описано 6 типов аквапоринов, первый из них (AQP-1) имеется в мембранах клеток проксимальных канальцев (рис. 14.8). Всасывание воды происходит пассивно путем простой диффузии по осмотическому градиенту и прямо зависит от реабсорбции ионов натрия хлорида, других осмотически активных веществ. Благодаря этому содержимое проксимального отдела остается изоосмотичным плазме крови.