Реактивное сопротивление что это
Основы автоэлектрики. Часть4. Реактивные сопротивления.
Мы уже охватили достаточно глубоко базу понятий электротехнических законов, но она будет недостаточно полной для линейных (пассивных) элементов (электронных компонентов, радиодеталей) без изучения реактивных сопротивлений, которые возникают в индуктивных и емкостных компонентах.
Но для начала, дабы у нас не возникало сомнений далее по тексту, дам некоторые определения:
Электронный компонент — минимальный компонент электрической схемы. Сюда мы относим резисторы, конденсаторы, диоды, проводники, тумблеры, лампы, транзисторы и так далее. Многие их называют радиодеталями, что на мой взгляд сегодня менее актуально, нежели тридцать лет назад до возникновения цифровой электроники.
Пассивные электронные компоненты (они же — линейные) — это электронные компоненты, вольтамперные характеристики которых линейны. Как это понять? Да просто: подали какой-то ток, получили какое-то напряжение. Подали в энное количество раз больший или меньший ток, получили во столько же раз большее или меньшее напряжение. Сюда относятся резисторы, конденсаторы, катушки индуктивности, трансформаторы проводники, предохранители, переключатели, кварцевые резонаторы и тому подобные.
Активные электронные компоненты (они же — нелинейные) — это те компоненты, вольтамперные характеристики которых нелинейны. Это сегодня в большей мере полупроводниковые элементы (диоды, стабилитроны, светодиоды, транзисторы, микроконтроллеры и т.д.) и менее востребованные сегодня электровакуумные компоненты (к примеру, знакомые тем, кому за тридцать, радиолампы). Тут при изменении тока напряжение будет изменяться нелинейно. К примеру, стабилитрон до какого-то значения напряжения будет пропускать минимальный ток, а при преодолении порога ток резко увеличится.
Фактически вольтамперная характеристика — это ничто иное как сопротивление. И если у пассивных оно не зависит от подаваемового тока или прикладываемого напряжения, то у активных сопротивление зависит от этих параметров.
Теперь подробнее о видах сопротивления:
Активное сопротивление — это то сопротивление, которое не зависит от изменения тока или напряжения.
Реактивное сопротивление — это то сопротивление, которое зависит от изменения тока или напряжения.
Тут следует обратить внимание, что реактивное сопротивление зависит не от величины тока или напряжения (как, к примеру, активное сопротивление активных электронных компонентов), а зависит именно от изменения и собственных характеристик компонента. От слова «реакция». Если элемент обладает только активным сопротивлением, то реакция падения напряжения на изменение тока будет практически мгновенной и будет оставаться таковым до тех пор, пока значение тока сохраняется. Если элемент обладает реактивным сопротивлением, то происходит некий эффект запаздывания, инерции на изменение тока или напряжения.
Реактивным сопротивлением обладают емкостные и индуктивные пассивные электронные компоненты.
Сегодня мы не будем рассматривать конструкции, разновидности и прочие тонкости конденсаторов и катушек индуктивностей, а взглянем на них лишь с точки зрения реактивного сопротивления.
1. Катушка индуктивности как элемент реактивного сопротивления.
Рассмотрим известную нам уже схему с делителем:
Мы уже смотрели, как зависит падение напряжения на каждом из резисторов, которые обладают (говорим уже сегодняшним языком) активным сопротивлением. Если картинка не знакома, советую ещё раз прочитать предыдущую часть цикла статей.
Т.е. как работает активное сопротивление нам уже понятно. Что же будет, если, к примеру, вместо резистора R2 мы установим катушку индуктивности (дроссель)?
Для начала условно-графическое обозначение катушки индуктивности:
Представим, что дроссель обладает нулевым внутренним активным сопротивлением (на деле, конечно же, оно немного больше нуля, так как это провод). При включении тумблера S1 будет происходить следующее:
— Всё напряжение упадёт на дросселе, при этом на резисторе будет нулевое напряжение. Ток через дроссель, а значит через всю цепь идти не будет. Катушка индуктивности по сути будет имитировать обрыв в цепи.
— Далее сопротивление катушки начинает снижаться, тем самым пропуская через себя ток. Напряжение на дросселе начнёт снижаться, а на резисторе расти.
— В конечном счёте значение тока цепи достигнет своего пика, всё напряжение упадёт на резисторе R1, а на дросселе напряжение будет равно нулю, т.е. дроссель превратится в провод.
Какое максимальное значение тока, при котором система придёт в состояние покоя? Очевидно, что если дроссель превратится в провод с нулевым активным сопротивлением, то ток будет равен:
В реальности, конечно же, некоторое активное сопротивление дросселя имеется, считается аналогично как для провода, из которого намотан дроссель, но оно, как правило, ничтожно мало по сравнению со всей цепью.
R2 в нашем примере — реактивное сопротивление и проявляет себя лишь в момент изменения напряжения данной цепи. В нашем рассмотренном случае — при включении тумблера. Если же мы приложим вместо постоянного переменное напряжение, то будет происходить некоторое раскачивание цепи по тому же принципу, что и при включении/выключении тумблера, только с периодичностью переменного тока.
Думаю, как работает активное сопротивление в цепи с индуктивным элементом понятно. Не понятно пока лишь то, как долго происходит реакция цепи на изменение. Но об этом позже.
2. Конденсатор как элемент реактивного сопротивления.
А пока рассмотрим ту же цепь, но теперь вместо R2 расположим конденсатор.
Конденсатор обозначается так:
Как поведёт себя цепь в данном случае?
— Сначала всё напряжение достанется резистору. Реакция цепи будет аналогичной той, когда конденсатора нет вообще, а вместо него провод.
— Далее начнёт происходить заряд пластин конденсатора, ток цепи будет снижаться, напряжение на резисторе начнёт снижаться, а на конденсаторе расти.
— В конечном счёте, когда конденсатор зарядится, на резисторе напряжение будет равно нулю, ток в цепи перестанет протекать, а всё напряжение упадёт на конденсаторе. Конечная схема будет эквивалента той, если бы вместо R2 был бы обрыв цепи.
Таким образом ведёт себя емкостное реактивное сопротивление. Конечно же, в реальности у конденсаторов имеется некоторое небольшое активное сопротивление, которое можно изобразить, как последовательно включенный резистор ёмкости, и некоторое достаточно большое (несколько мегаом), которое можно изобразить как параллельно включенный ёмкости резистор. Но в большинстве задач ими можно пренебречь, хотя бывают цепи, где этим сопротивлениям требуется уделить отдельное внимание. Но на данном этапе это лишнее.
Сегодня мы коснулись понятия реактивного сопротивления и посмотрели, как и на каких электронных компонентах оно проявляется.
Что можно сказать о двух рассмотренных видах реактивного сопротивления? Они проявляются абсолютно противоположным образом: в момент включения конденсатор — провод, а дроссель — обрыв, в момент окончания реакции конденсатор — обрыв, а дроссель — провод.
Имеется определённое время реакций цепей с реактивными сопротивлениями, которые мы рассмотрим в следующих статьях на примерах фильтров частот, как самых простых цепях. Кроме того, немного постараемся вникнуть в суть цепей, в которых есть оба вида реактивных сопротивлений, самый популярный из которых носит название колебательного контура. Ну, и конечно же, постараемся немного посчитать.
Конечно, пока малопонятно многим, какую эти знания приносят пользу в автоэлектрике, но советую посмотреть по капот, на приборку или блок управления ДВС и задуматься, что же определяет временные характеристики всего этого добра, почему некоторые проблемы возникают «время от времени» или «при определённых условиях» и что скрывается за понятиями «цепи защиты»? Без элементарного понимания, как же себя проявляют пассивные компоненты, дальнейшее развитие в автоэлектрике невозможно. Конечно, в большинстве случаев на правильность подключения магнитолы, установку сигнализации или замену умершего датчика это особо не влияет, хотя и тут как знать… как знать…
А сегодня на сим всё!
Продолжение следует;)
Реактивное сопротивление
Что такое сопротивление
Ток, протекая через провода и различные радиодетали, тратит свою энергию. Это явление количественно выражается величиной сопротивления. В электротехнике его разделяют на активное и реактивное сопротивление. В первом случае при прохождении тока часть его энергии превращается в тепловой вид, а иногда и в другие (например, проявляется в химических реакциях). Величина активного сопротивления зависит от частоты переменного электротока и возрастает с ее увеличением.
Второй тип сопротивления имеет более сложную природу и возникает в момент включения или выключения потребителя электроэнергии в сеть переменного или постоянного тока. В цепи с реактивным сопротивлением энергия электрического тока частично превращается в другую форму, а затем переходит обратно, то есть, наблюдается периодический колебательный процесс. Полное сопротивление цепи включает в себя активный и реактивный типы, которые учитываются по особым правилам.
Понятие реактивного сопротивления
Данная разновидность репрезентирует взаимоотношение электротока и напряжения на определенных типах подключенных в сеть нагрузок (дросселях, конденсаторных компонентах), не сопряженное с объемами электроэнергии, используемыми потребителем. Измерительной единицей, как и для других разновидностей, выступает ом. Рассматриваемое явление обнаруживает себя только при переменном электротоке. В расчетах оно обозначается латинской литерой Х.
Активное и реактивное сопротивление
При необратимом изменении электроэнергии компонента цепи в другие типы энергии, сопротивление элемента является активным. При осуществлении обменного процесса электроэнергией между компонентом цепи и источником, то сопротивление реактивное.
В электрической плите электроэнергия необратимо преобразуется в тепло, вследствие этого электроплита имеет активное сопротивление, так же как и элементы, преобразующие электричество в свет, механическое движение и т.д.
В индуктивной обмотке переменный ток образует магнитное поле. Под воздействием переменного тока в обмотке образуется ЭДС самоиндукции, которая направлена навстречу току при его увеличении, и по ходу тока при его уменьшении. Поэтому, ЭДС оказывает противоположное действие изменению тока, создавая индуктивное сопротивление катушки.
С помощью ЭДС самоиндукции осуществляется возвращение энергии магнитного поля обмотки в электрическую цепь. В итоге обмотка индуктивности и источник питания производят обмен энергией. Это можно сравнить с маятником, который при колебаниях преобразует потенциальную и кинетическую энергию. Отсюда следует, что сопротивление индуктивной катушки имеет реактивное сопротивление.
Самоиндукция не образуется в цепи постоянного тока, и индуктивное сопротивление отсутствует. В цепи емкости и источника переменного тока изменяется заряд, значит между емкостью и источником тока протекает переменный ток. При полном заряде конденсатора его энергия наибольшая.
В цепи напряжение емкости создает противодействие течению тока своим сопротивлением, и называется реактивным. Между конденсатором и источником происходит обмен энергией.
После полной зарядки емкости постоянным током напряжение его поля выравнивает напряжение источника, поэтому ток равен нулю.
Конденсатор и катушка в цепи переменного тока работают некоторое время в качестве потребителя энергии, когда накапливают заряд. И также работают в качестве генератора при возвращении энергии обратно в цепь.
Если сказать простыми словами, то активное и реактивное сопротивление – это противодействие току снижения напряжения на элементе схемы. Величина снижения напряжения на активном сопротивлении имеет всегда встречное направление, а на реактивной составляющей – попутно току или навстречу, создавая сопротивление изменению тока.
Настоящие элементы цепи на практике имеют все три вида сопротивления сразу. Но иногда можно пренебречь некоторыми из них ввиду незначительных величин. Например, емкость имеет только емкостное сопротивление (при пренебрежении потерь энергии), лампы освещения имеют только активное (омическое) сопротивление, а обмотки трансформатора и электромотора – индуктивное и активное.
Активное сопротивление
В цепи действия напряжения и тока, создает противодействие, снижения напряжения на активном сопротивлении. Падение напряжения, созданное током и оказывающее противодействие ему, пропорционально активному сопротивлению.
При протекании тока по компонентам с активным сопротивлением, снижение мощности становится необратимым. Можно рассмотреть резистор, на котором выделяется тепло. Выделенное тепло не превращается обратно в электроэнергию. Активное сопротивление, также может иметь линия передачи электроэнергии, соединительные кабели, проводники, катушки трансформаторов, обмотки электромотора и т.д.
Отличительным признаком элементов цепи, которые обладают только активной составляющей сопротивления, является совпадение напряжения и тока по фазе. Это сопротивление вычисляется по формуле:
R = U/I, где R – сопротивление элемента, U – напряжение на нем, I – сила тока, протекающего через элемент цепи.
На активное сопротивление влияют свойства и параметры проводника: температура, поперечное сечение, материал, длина.
Какое сопротивление называется реактивным, какое активным
Активное электросопротивление — это важный параметр электрической сети, который обуславливает превращение электрической энергии, поступающей в участок электроцепи или в отдельный элетроэлемент в любой другой тип энергии: химическую, механическую, тепловую, электромагнитную. Процесс превращения при этом считаю необратимым.
Типы рассматриваемой величины и формулы ее расчета
Реактивное сопротивление по-другому называется реактансом и представляет собой сопротивляемость элементов электроцепи, которые вызывается измерением силы электротока или напряжения из-за имеющейся емкости или индуктивности этого элемента. При реактансе происходит обменный процесс между отдельным компонентом сети и источником энергии. Часто это понятие относят к простому электрическому сопротивлению, однако оно отличается некоторыми моментами.
Течение переменного электротока не зависит от типа сопротивляемости элементов и всей сети
Различия между активным и реактивным сопротивлением
Разница между активным и реактивным сопротивлением состоит в том, что при прохождении электротока по компонентам цепи, несущим активную нагрузку, имеют место мощностные потери в виде выделения тепла, которое не может быть снова превращено в электрическую энергию. В качестве наглядного примера можно привести конфорку электроплиты, выделяющую тепловую энергию. Такими свойствами обладают и осветительные устройства, электрические двигатели, различные кабели. Фазы проходящих через такие компоненты напряжения и электротока будут совпадать.
От чего зависит сопротивление проводника
Реактивные нагрузки отличаются наличием емкостных свойств либо способностью к индукции. В первом случае величина рассматриваемого сопротивления зависит от емкости, во втором – от электродвижущей силы самоиндукции.
Важно! Величина, в противоположность активной, может иметь плюсовой и минусовой знаки. Это зависит от того, в какую сторону идет фазовый сдвиг. При опережении электрическим током напряжения будет иметь место отрицательный показатель, в обратном случае – положительный.
Активное сопротивление в цепи переменного тока
Определим величину тока в цепи переменного тока с чисто активным сопротивлением.
Схема с чисто активной нагрузкой.
Для переменного тока закон, по которому меняется мгновенное значение напряжения, имеет следующий вид:
$$U=U_m sin(omega t+varphi)$$
Мгновенное значение тока через любой элемент находится по закону Ома:
Подставляя предыдущую формулу в закон Ома, получим:
Из этой формулы видно, что колебания силы тока в цепи с чисто активным сопротивлением имеют ту же частоту и фазу, что и колебания напряжения. Ток в цепи в любой момент времени возрастает пропорционально напряжению. Амплитуда активного сопротивления постоянна. А значит, действующие значения переменного напряжения и тока также можно находить по закону Ома.
Это важная особенность активного сопротивления. Оно не обладает инерционностью, ток и напряжение через него изменяются синфазно. Вся энергия движущихся по активному сопротивлению зарядов сразу преобразуется в тепловую (и, возможно, механическую).
Отсюда следует, что энергия, выделяемая на активном сопротивлении в цепи переменного тока, находится непосредственно из закона Джоуля-Ленца с использованием действующих значений:
Указанные соотношения справедливы только для чисто активных сопротивлений. Для сопротивлений, которые имеют реактивную составляющую, к примеру, для катушки индуктивности, зависимость мгновенного значения тока сложнее, и закон Джоуля-Ленца в таком виде использовать нельзя.
Любой реальный проводник обладает некоторой индуктивностью, а между любыми частями реальных проводников и элементов существует некоторая электроемкость. Поэтому чисто активных сопротивлений, строго говоря, не существует. Любое реальное активное сопротивление имеет некоторую реактивную составляющую. На низких частотах она очень мала, и ею пренебрегают. На высоких же частотах ею пренебречь нельзя, и она всегда оказывает заметное влияние на поведение и параметры цепи.
Индуктивное реактивное сопротивление
Оно встречается в цепях, где есть своего рода электромагниты, влияющие на магнитное поле электрической цепи. Еще их называют катушками индуктивности. Катушки индуктивности имеют низкое полное электрическое сопротивление на низких частотах и высокое полное электрическое сопротивление на высоких частотах.
Пользоваться всеми известными формулами по определению активного сопротивления — не рекомендуется [Л1. с.18],связано это с тем, что действительное сечение отличается от номинального сечения, провода выпускались в разное время, по разным ГОСТ и ТУ и величины удельной проводимости (ρ) и удельного сопротивления (γ) у них разные:
Активные сопротивления стальных проводов математическому расчету не поддаются. Поэтому рекомендую для определения активного сопротивления использовать приложения П23 – П25 [Л1. с.80,81].
Реактивное сопротивление в электротехнике
Известный в электротехнике закон Ома объясняет, что если по концам какого-то участка цепи приложить разность потенциалов, то под ее действием потечет электрический ток, сила которого зависит от сопротивления среды.
Источники переменного напряжения создают ток в подключенной к ним схеме, который может повторять форму синусоиды источника или быть сдвинутым по углу от него вперед либо назад.
Если электрическая цепь не изменяет направления прохождения тока и его вектор по фазе полностью совпадает с приложенным напряжением, то такой участок обладает чистым активным сопротивлением. Когда же наблюдается отличие во вращении векторов, то говорят о реактивном характере сопротивления.
Различные электротехнические элементы обладают неодинаковой способностью отклонять направление тока, протекающего через них и изменять его величину.
Реактивное сопротивление катушки
Возьмем источник стабилизированного переменного напряжения и отрезок длинной изолированной проволоки. Вначале подключим генератор на всю расправленную проволоку, а затем на ее же, но смотанную кольцами вокруг магнитопровода, который используется для улучшения прохождения магнитных потоков.
Точно замеряя в обоих случаях ток, можно заметить, что при втором эксперименте будет замечено значительное снижение его величины и отставание по фазе на определенный угол.
Это происходит за счет возникновения противодействующих сил индукции, проявляющихся под действием закона Ленца.
На рисунке прохождение первичного тока показано красными стрелками, а создаваемое им магнитное поле — синими. Направление его движения определяется по правилу правой руки. Оно же пересекает все соседние витки внутри обмотки и индуцирует в них ток, показанный зелеными стрелками, который ослабляет величину приложенного первичного тока, одновременно сдвигая его направление по отношению к приложенной ЭДС.
Чем большее число витков намотано на катушке, тем сильнее создается индуктивное сопротивление XL, уменьшающее первичный ток.
Его величина зависит от частоты f, индуктивности L, рассчитывается по формуле:
За счет преодоления сил индуктивности ток на катушке отстает от напряжения на 90 градусов.
Реактивное сопротивление трансформатора
У этого устройства на общем магнитопроводе расположены две или большее количество обмоток. Одна из них получает электроэнергию от внешнего источника, а другим она передается по принципу трансформации.
Первичный ток, проходящий по силовой катушке, наводит в магнитопроводе и вокруг него магнитный поток, который пересекает витки вторичной обмотки и формирует в ней вторичный ток.
Поскольку идеально создать конструкцию трансформатора невозможно, то часть магнитного потока будет рассеиваться в окружающую среду и создаст потери. Они называются потоком рассеивания и влияют на величину реактивного сопротивления рассеяния.
К ним добавляется активная составляющая сопротивления каждой обмотки. Полученная суммарная величина называется электрическим импедансом трансформатора или его комплексным сопротивлением Z, создающим перепады напряжения на всех обмотках.
Для математического выражения взаимосвязей внутри трансформатора активное сопротивление обмоток (обычно изготавливаемых из меди) обозначают индексами «R1» и «R2», а индуктивное — «Х1» и «Х2».
Импеданс в каждой обмотке имеет вид:
В этом выражении индексом «j» обозначена мнимая единица, расположенная на вертикальной оси комплексной плоскости.
Наиболее критичный режим в отношении индуктивного сопротивления и возникновении реактивной составляющей мощности создается при параллельном подключении трансформаторов в работу.
Реактивное сопротивление конденсатора
Конструктивно в его состав входят две или несколько токопроводящих пластин, отделенных слоем материала, обладающего диэлектрическими свойствами. За счет этого разделения постоянный ток не может пройти через конденсатор, а переменный — способен, но с отклонением от первоначальной величины.
Ее изменение объясняется принципом работы реактивного — емкостного сопротивления.
Под действием приложенного переменного напряжения, изменяющегося по синусоидальной форме, на обкладках происходит всплеск, накопление зарядов электрической энергии противоположных знаков. Общее их количество ограничено габаритами устройства и характеризуется емкостью. Чем она больше, тем дольше времени идет заряд.
В течение следующего полупериода колебания полярность напряжения на обкладках конденсатора меняется на противоположное. Под его воздействием происходит смена потенциалов, перезарядка сформированных зарядов пластин. Таким способом создается протекание первичного тока и противодействие его прохождению, когда он уменьшается по величине и сдвигается по углу.
По этому вопросу у электриков есть шутка. Постоянный ток на графике представлен прямой линией и когда он идет по проводу, то электрический заряд, дойдя до обкладки конденсатора упирается в диэлектрик, попадая в тупик. Эта преграда не дает ему пройти.
Синусоидальная же гармоника идет переваливаясь через препятствия и заряд, свободно перекатившись через нарисованные обкладки, теряет небольшую часть энергии, которая зацепилась за пластины.
У этой шутки есть скрытый смысл: при подаче на обкладки постоянного или выпрямленного пульсирующего напряжения между пластинами за счет накопления ими электрических зарядов создается строго постоянная разность потенциалов, которая сглаживает все скачки питающей цепи. Это свойство конденсатора увеличенной емкости используется в стабилизаторах постоянного напряжения.
В общем, емкостное сопротивление Xc или противодействие прохождению через него переменному току зависит от конструкции конденсатора, определяющей емкость «С», и выражается формулой:
За счет перезарядки обкладок ток через конденсатор опережает напряжение на 90 градусов.
Реактивное сопротивление линии электропередачи
Любая ЛЭП создается для передачи электрической энергии. Ее принято представлять участками со схемами замещения, обладающими распределенными параметрами активного r, реактивного (индуктивного) x сопротивления и проводимости g, отнесенными к единице длины, как правило, одному километру.
Если пренебречь влиянием емкости и проводимости, то можно пользоваться упрощенной схемой замещения линии, обладающей сосредоточенными параметрами.
Передача электроэнергии по неизолированным проводам, расположенным на открытом воздухе, требует значительного удаления их между собой и от земли.
При этом индуктивное сопротивление одного километра провода трехфазной линии можно представить выражением Х0. Оно зависит от:
среднего удаления осей проводов между собой аср;
наружного диаметра фазных жил d;
относительной магнитной проницаемости материала µ;
внешнего индуктивного сопротивления линии Х0’;
внутреннего индуктивного сопротивления линии Х0’’.
Для справки: индуктивное сопротивление 1 км ВЛ, выполненной из цветного металла составляет порядка 0,33÷0,42 Ом/км.
Линия электропередачи, использующая высоковольтный кабель, конструктивно отличается от ВЛ. У нее расстояние между фазами проводов значительно уменьшено и определяется толщиной слоя внутренней изоляции.
Такой трехжильный кабель можно представить в виде конденсатора с тремя обкладками из жил, протянутых на большое расстояние. С увеличением его протяженности возрастает емкость, снижается емкостное сопротивление и увеличивается емкостной ток, замыкающийся по кабелю.
В кабельных линиях под воздействием емкостных токов наиболее часто происходят однофазные замыкания на землю. Для их компенсации в сетях 6÷35 кВ используют дугогасящие реакторы (ДГР), которые подключают через заземленную нейтраль сети. Их параметры подбираются сложными методами теоретических расчетов.
Старые ДГР не всегда эффективно работали из-за низкого качества настройки и несовершенства конструкции. Они создавались под усредненные расчетные токи замыканий, которые часто отличались от реальных значений.
Сейчас внедряются новые разработки ДГР, способные в автоматическом режиме отслеживать аварийные ситуации, быстро замерять их основные параметры и подстраиваться для надежного гашения токов замыкания на землю с точностью до 2%. Благодаря этому эффективность работы ДГР сразу возросла на 50%.
Принцип компенсации реактивной составляющей мощности конденсаторными установками
Электрические сети передают высоковольтную электроэнергию на огромные расстояния. Большинством ее потребителей являются электродвигатели, обладающие индуктивным сопротивлением, и резистивные элементы. Полная мощность, направляемая потребителям, состоит из активной составляющей Р, расходуемой на совершение полезной работы, и реактивной Q — вызывающей нагрев обмоток трансформаторов и электродвигателей.
Реактивная составляющая Q, возникая на индуктивных сопротивлениях, снижает качество электроэнергии. Для уничтожения ее вредного воздействия в восьмидесятых годах прошлого века в энергосистеме СССР использовалась схема компенсации за счет подключения конденсаторных батарей, обладающих емкостным сопротивлением, которое снижало косинус угла φ.
Они устанавливались на подстанциях, непосредственно питающих проблемных потребителей. Этим обеспечивалось местное регулирование качества электроэнергии.
Таким способом можно значительно уменьшить нагрузку на оборудование за счет снижения реактивной составляющей при передаче одной и той же активной мощности. Этот способ считается наиболее эффективным приемом энергосбережения не только на промышленных предприятиях, но и на объектах ЖКХ. Его грамотное использование позволяет значительно повысить надежность эксплуатации энергосистем.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети: