Реактор апл что это
Реактор апл что это
И в США, и в СССР на ранней стадии рассматривались два варианта реакторов для атомных подводных лодок: водо-водяной и с жидкометаллическим теплоносителем. В варианте с жидкометаллическим теплоносителем в обоих странах были построены опытные стенды и по одной подводной лодке. Только в СССР, несмотря на возникающие проблемы, подобные АПЛ получили право на жизнь, а в США этот проект в 1957 году был закрыт окончательно и бесповоротно.
Идея использования в атомной подводной лодке реактора с жидкометаллическим теплоносителем (ЖМТ) возникла в сентябре 1952 года, когда по решению правительства СССР началось проектирование первой отечественной атомной подлодки. Предложение об использовании реактора с ЖМТ было выдвинуто А.И. Лейпунским в его письме в Первое Главное управление, отправленном в том же сентябре. Целесообразность развития этого направления, по его мнению, заключалась в возможности получения пара более высокой температуры.
Работы начались с выходом 22 октября 1955 года Постановления «О начале работ по созданию ПЛА проекта 645». Головной корабль проекта, который в итоге станет единственным представителем класса, предназначался для борьбы с надводными кораблями и транспортными судами противника при действиях на океанских и удаленных морских театрах.
За основу проекта АПЛ, вести который было поручено СКБ-143, был взят проект первой атомной подводной лодки К-3, поэтому предэскизный и эскизный проекты не разрабатывались. Осенью 1956 года технический проект АПЛ был готов. Несмотря на то, что изначально ставилась задача создать аналог АПЛ К-3 с водо-водяным реактором, между этими двумя лодками появились кардинальные отличия. Тяжёлые ядерные реакторы были смещены ближе к носу корабля, что позволило улучшить его дифферентовку. Это решение было обусловлено во многом ошибочным мнением о безопасности этого типа реакторов и повлекло за собой ухудшение условий обеспечения радиационной безопасности центрального отсека.
Разработчиками силовой установки стали ОКБ «Гидропресс» при научном руководстве Лаборатории «В» (ФЭИ, А.И. Лейпунский), в 1959 году к проекту подключилось ОКБМ. Техническое задание на проектирование реактора для паропроизводящей установки (ППУ) с жидкометаллическим теплоносителем, разработанное Лабораторией «В», было выдано в ОКБМ 20 февраля 1959 года. Техническим заданием предусматривалось несколько вариантов реактора: с эвтектическим сплавом свинец-висмут, с жидким литием, для одно- или двухреакторной паропроизводящей установки (ППУ). В дальнейшем, учитывая, что литий, как теплоноситель, был менее изучен, было принято решение проектные проработки ППУ вести только со сплавом свинец-висмут и в двухреакторном исполнении (индекс ОК-250). В пользу сплава свинец-висмут также были низкая температура плавления (123 град.), высокая температура кипения (1670 град.), низкая активность при контакте с воздухом или водой, а также исключение возможности образования водорода при любых авариях.
Реализация установки с ЖМТ свинец-висмут по целому ряду ее особенностей оказалась значительно более сложной в отработке и потребовала решения таких проблем, как:
Сложной оказалась и проблема обеспечения надежной работы парогенераторов с многократной принудительной циркуляцией, которые были приняты в этой установке, хотя по условиям гидродинамики в связи с наличием сепараторов во втором контуре проблема надежности трубных систем, казалось бы, должна была решаться проще, чем в прямоточных генераторах.
Очень трудно решались проблемы уплотнений насосов первого контура. Разветвленность первого контура породила и проблему «подмораживания» сплава на отдельных участках, что потребовало принятия специальных мер конструктивного плана, а также привело к значительному усложнению эксплуатации установки.
Для решения этих и других проблем в отрасли была создана мощная экспериментальная база, десятки крупных и небольших стендов, реакторные петли и, наконец, в январе 1959 года в ФЭИ был введен в эксплуатацию полномасштабный стенд-прототип реакторной установки 27/ВТ. Его эксплуатация выявила две важнейшие проблемы.
Так, первая кампания эксплуатации стенда завершилась вполне успешно, однако разборка активной зоны после второй кампании показала наличие большого количества шлаков. Этот факт показал недооценку научным руководителем и проектировщиками важности решения проблемы теплоносителя, вследствие чего начались систематические научные исследования в этой области.
Вторая проблема заключалась в «подмораживании» теплоносителя на отдельных участках свинцово-висмутового контура, в частности, первый пуск стенда начался с «подмораживания» активной зоны. Для её решения также был запущен ряд НИР.
Еще одну опасность представлял высокорадиоактивный полоний, образующий в активной зоне. На стенде 27/ВТ в 60-х годах произошло несколько аварий с проливом радиоактивного теплоносителя, что потребовало отработки мероприятий и средств защиты персонала от полония, которые в дальнейшем были перенесены и на подводную лодку.
Разработка рабочих чертежей подводной лодки началась в 1956 году и велась в течение 1957 года. По их готовности в 1958 году была составлена вся техническая документация проекта, получившего индекс 645 (645 ЖМТ). Проект предусматривал, что главная энергетическая установка (ГЭУ) АПЛ проекта 645 мощностью 35 тыс. л.с. состоит из двухреакторной паропроизводящей установки (ППУ) и двухвальной паротурбинной установки. В состав ГЭУ входят два ядерных реактора ВТ-1 с жидкометаллическим теплоносителем суммарной мощностью 146 МВт.
Строительство лодки стартовало в сентябре 1957 года, корабль был заложен на заводе 402 (г. Северодвинск) в цехе 42. При разработке проекта новой лодки был внедрён ряд новых конструкторских решений и использованы новые материалы.
Атомная лодка проекта 645, получившая шифр К-27, была спущена на воду 1 апреля 1962 года. Сразу после спуска на воду начались швартовые испытания, которые проводились с 8 мая 1962 по 10 июня 1963 гг. Одновременно с этим велась достройка ПЛА, были проведены комплексные проверки систем, механизмов и вооружения корабля. При этом энергетическая установка в течение 1962 года ещё не была полностью собрана.
17 августа 1962 года началась загрузка топлива: в атомные реакторы были помещены выемные части с активными зонами. Наполнение первых контуров реактора теплоносителем было проведено 6-7 декабря, теплоноситель поддерживался в разогретом состоянии, и все системы и механизмы реактора работали на холостом ходу. До конца года оба реактора были запущены, и 8 января 1963 года началась обкатка механизмов первых контуров. На лодке работала испытательная партия, составленная из сотрудников СКБ-143, вместе с испытаниями проводилась сдача систем управления реактором и передача их под управление экипажа лодки.
22 июня 1963 года на АПЛ К-27 поднят Военно-морской флаг СССР, после чего лодка находилась в море на совместных заводских, ходовых и государственных испытаниях, которые успешно завершились 30 октября подписанием приёмного акта. В нем также было предложено организовать длительный автономный поход лодки К-27 для «более глубокого изучения эксплуатационных качеств лодки и её АЭУ».
За время сдаточных испытаний лодка прошла 5760 миль за 528 ходовых часов, что в 1,5 раза больше, чем у первенца атомного советского подводного флота АПЛ К-3, причем 3370 миль лодка прошла в подводном положении.
Первый поход К-27 начался 21 апреля 1964 года и длился 51 сутки. Задачей похода стало испытание лодки на предельных режимах для выявления возможностей лодки и проверке систем и механизмов корабля в условиях автономного плавания. В походе возникла нештатная ситуация с реактором левого борта подводной лодки: расплавленный металл попал в газовую систему первого контура и застыл там. В результате в системе произошло падение вакуума, а единственным способом устранения неисправности стала работа непосредственно на месте аварии, вблизи активной зоны реактора. Работы выполнил командир дивизиона капитан 3 ранга А.В. Шпаков, который разрезал дефектную трубку и вручную прочистил её, получив при этом значительную дозу радиации. Затем специалисты-сварщики заварили трубку, восстановив работоспособность реактора.
Наиболее экстремальные условия эксплуатации во время похода были в экваториальных водах, когда температура забортной воды превышала 25 град. Системы охлаждения реактора работали на пределе своих возможностей, при этом температура в реакторном и турбогенераторных отсеках была около 60 0C, а остальные отсеки лодки прогревались до температуры в 45 0C при влажности до 100 %. В походе лодка прошла 12 425 миль, и практически все они были пройдены под водой – на тот момент это был мировой рекорд.
Второй поход лодки начался 15 июля 1965 года и длился 60 суток. Задачей похода стало обозначение присутствия советского подводного флота в Средиземном море, где находился 6-й флот США. В походе случилось несколько нештатных ситуаций, в том числе одна «ядерная» – 25 августа произошло снижение мощности реактора в результате его «отравления» ксеноном, из-за чего энергетические установки корабля работали на 35-80 % мощности.
За время похода было пройдено 15 000 миль, и лодка вернулась на базу в Северодвинск для ремонта, в ходе которого было обнаружено большое количество трещин на легком корпусе лодки.
При подготовке к новому походу в январе-феврале 1967 года на лодке были установлены активные зоны с удвоенной длительностью компании. Операция перезарядки прошла с определёнными сложностями, так как атомоход был загрязнен радиоактивными элементами от первого до девятого отсека. 13 октября 1967 года состоялся выход подлодки в море для проверки систем и механизмов лодки. В море создалась аварийная ситуация, результатом которой стал заброс жидкометаллического сплава в газовую систему 1 контура реактора правого борта. Причиной инцидента стало окисление сплава свинец-висмут, в результате которого образовались шлаки, которые закупорили проход для теплоносителя. В результате два насоса были залиты застывшим радиоактивным сплавом. Для работы реактора потребовалось срочно устранить последствия, в результате ряд специалистов получил предельную годовую дозу радиации, и не был допущен к третьему походу.
Уборка радиоактивного сплава из отсека проводилась по возвращении на базу личным составом других боевых частей и дивизионов, а также вторым экипажем лодки. Для очистки необходимо было кувалдой и зубилами извлекать застывший среди трубопроводов реактора радиоактивный металл. Сроки работы из-за высокой радиоактивности были ограничены десятью минутами, моряки делали по два-три пятиминутных захода, но все равно получили высокие дозы радиоактивного облучения.
После окончания работ началась подготовка к походу. В рамках подготовки была проведена высокотемпературная регенерация сплава для устранения окисей, однако под давлением руководства Северного флота сроки работ были сокращены с затребованных трёх недель до одной.
25 мая был создан штаб по ликвидации последствий аварии на лодке К-27, который принял решение с целью локализации зоны радиоактивного заражения и последствий радиоактивного загрязнения двигательной установки левого борта усилить защиту реактора и заложить аварийный отсек мешками со свинцовой дробью.
В начале июня 1968 года состояние лодки оценила специальная комиссия, которая приняла решение о расхолаживании реакторов. К 20 июня 1968 года машины и механизмы АПЛ были остановлены и законсервированы, лодка выведена из эксплуатации и поставлена на прикол в губе Гремихе.
В январе-феврале 1973 года на АПЛ К-27 был проведен важный эксперимент. Исправную ППУ правого борта успешно «разморозили» и вывели на мощность 20 % от номинальной с подачей пара. Эксперимент обосновал возможность восстанавливать работоспособность реактора с жидкометаллическим теплоносителем после долгого простоя.
В апреле 1980 года было решено законсервировать реакторный отсек лодки, чтобы затопить К-27 в море. С мая 1980 года лодка прошла докование на ЦС «Звездочка», где реакторные установки со всеми трубопроводами были заполнены специальным составом. Поверх этого отсек залили 270 тоннами битума, который полностью закрыл реакторы, чтобы препятствовать проникновению морской воды к радиоактивным частям лодки, вымыванию и заражению моря.
10 сентября 1981 года АПЛ К-27 была затоплена в Карском на глубине 75 метров.
Использование реактора с жидко-металлическим теплоносителем породило немало проблем. Так, например, для поддержания реактора в «горячем» состоянии в Западной Лице на берегу была построена котельная для подачи пара на подводные лодки, а также пришвартованы эсминец и плавбаза. Но в связи с низкой надежностью берегового комплекса подводные лодки «грелись» от своего ядерного реактора, который постоянно работал на минимально контролируемом уровне мощности.
Ещё в процессе конструирования было выявлено несовершенство конструкции реактора, поэтому против использования его в реальных условиях выступили несколько учёных. Так, один из ведущих специалистов СКБ-143 по энергетике Р.И. Симонов на научно-техническом совете по выдвижению на премию за разработку ППУ на ЖМТ попросил снять свою кандидатуру по причине того, что он считал применение этих установок ошибочным.
Тем не менее, созданный реактор ВТ-1 стал значительным шагом в деле развития корабельной атомной энергетики. Он показал принципиальную возможность реализации преимущества ППУ с ЖМТ и определил круг проблем, которые необходимо было решать в будущем при создании установок подобного типа.
Атомные установки подлодок
На заре подводного судостроения, когда шел поиск оптимальных двигателей для субмарин, конструкторы экспериментировали, в том числе, с паросиловыми установками.
После того как в 1930-х годах дизель-электрические подлодки уже перешагнули 20-узловой рубеж, казалось, эра «паровых» субмарин завершилась навсегда. Но прошло всего полтора десятилетия, и о них вновь вспомнили. Разница состояла лишь в том, что пар для турбины должен вырабатывать не привычный котел, сжигающий органическое топливо, а котел атомный.
ФИЗИЧЕСКИЕ ПРИНЦИПЫ РАБОТЫ
ПЕРВЫЕ ШАГИ
Проработка вопросов создания ядерных силовых установок для подводных лодок началась в США в 1944 году, а уже через четыре года первая из них была спроектирована. Там же в июне 1952 года состоялась закладка первой атомной подводной лодки, получившей имя «Наутилус». На первый взгляд она была само воплощение человеческой мечты об истинной подводной лодке. Действительно, где, как только не в мечтах, можно было себе представить подводный корабль длиной почти 100 м способный более месяца, не всплывая, ходить скоростью более 20 узлов. Но, как это часто бывает, ощутимый качественный скачок в одной области технического прогресса повлек за собой целый букет сопутствующих проблем в смежных. Применительно к атомным силовым установкам – это прежде всего вопросы, связанные с ядерной безопасностью их эксплуатации и последующей утилизацией. Но в начале 1950-х годов об этом просто никто не задумывался.
ОБЩАЯ КОНСТРУКЦИЯ
В энергетических реакторах водо-водяного типа как замедлителем, так и теплоносителем систем является бидистиллят (дважды дистиллированная вода).
Чтобы сделать цепную реакцию возможной, размеры активной зоны реактора должны быть не меньше так называемых критических размеров, при которых эффективный коэффициент размножения равен единице. Критические размеры активной зоны зависят от изотопного состава делящегося вещества (уменьшаются с увеличением обогащения ядерного топлива ураном-235), от количества материалов, поглощающих нейтроны, вида и количества замедлителя, формы активной зоны и т. д. На практике размеры активной зоны назначаются больше критических, чтобы реактор располагал необходимым для нормальной работы запасом реактивности, который постоянно уменьшается и к концу кампании реактора становится равным нулю. Отражатель нейтронов, окружающий активную зону, должен сокращать утечку нейтронов. Он уменьшает критические размеры активной зоны, повышает равномерность нейтронного потока, увеличивает удельную мощность реактора, следовательно, уменьшает размеры реактора и обеспечивает экономию делящихся материалов. Обычно отражатель выполняется из графита, тяжелой воды или бериллия. Стержни управления и защиты содержат в себе материалы, интенсивно поглощающие нейтроны (например, бор, кадмий, гафний). К стержням управления и защиты относятся компенсирующие, регулирующие и аварийные стержни.
ОСНОВНЫЕ РАЗНОВИДНОСТИ
«Наутилус» имел силовую установку с водо-водяным реактором под давлением. Такие реакторы применены и на подавляющем большинстве других атомных субмарин.
Для того чтобы получить во втором контуре пар заданных параметров, вода первого контура должна иметь достаточно высокую температуру, превышающую таковую производимого пара. Для исключения вскипания воды в первом контуре в нем необходимо поддерживать соответствующее избыточное давление, обеспечивающее так называемый «недогрев до кипения». Так, в первом контуре зарубежных корабельных ядерных силовых установок поддерживается давление 140-180 атмосфер, которое позволяет нагревать воду контура до 250-280° С. При этом во втором контуре генерируется насыщенный пар давлением 15-20 атмосфер при температуре 200-250° С. На советских подводных лодках первого поколения температура воды в первом контуре составляла 200° С, а параметры пара – 36 атмосфер и 335° С.
С ЖИДКОМЕТАЛЛИЧЕСКИМ ТЕПЛОНОСИТЕЛЕМ
В 1957 году в состав ВМС США вошла вторая атомная подводная лодка «Сивулф». Ее принципиальное отличие от «Наутилуса» заключалось в ядерной силовой установке, где применялся реактор с натрием в качестве теплоносителя. Теоретически это должно было снизить удельную массу установки за счет снижения веса биологической защиты, а главное – повышения параметров пара. Температура плавления натрия, составляющая всего 98° С, и высокая температура кипения – более 800° С, а также отличная теплопроводность, в которой натрий уступает только серебру, меди, золоту и алюминию, делает его очень привлекательным для использования в качестве теплоносителя. Нагревая жидкий натрий в реакторе до высокой температуры, при относительно небольшом давлении в первом контуре – порядка 6 атмосфер, во втором контуре получали пар давлением 40-48 атмосфер с температурой перегрева 410-420°С.
А в 1970-е годы состав флота пополнили семь подлодок проекта 705 с ядерной силовой установкой на жидкометаллическим носителе и титановым корпусом. Эти субмарины обладали уникальными характеристиками – они могли развивать скорость до 41 узла и погружаться на глубину 700 м. Но эксплуатация их была чрезвычайно дорогой, из-за чего лодки этого проекта прозвали «золотыми рыбками». В дальнейшем ни в СССР, ни в других странах реакторы с жидкометаллическим теплоносителем не применялись, а повсеместно принятыми стали водо-водяные реакторы.
Каждая может уничтожить страну. Как устроены атомные подводные лодки
Наиболее интересной темой для человечества уже давно стал космос. Но в мире существуют не менее удивительные технические достижения, которые в какой-то степени являются звездолётами из научной фантастики — но для других стихий.
Взять, например, атомные подводные лодки: эти плавучие реакторы достигают океанского дна, плавают быстрее надводных кораблей и способны месяцами оставаться на глубине.
У них свой космос. Как получилось этого достичь, и где здесь связь с колонизацией других планет?
Принципиальное устройство подводной лодки
Любой подводный аппарат действительно очень похож на звездолёт: плотная среда, склонная к турбулентности при малейшем возмущении, заставляет разработчиков применять сложные формы для оптимизации движения.
Классическая подводная лодка с дизельным или дизель-электрическим агрегатом заимствует многое от надводных кораблей современного типа: есть палуба и остеклённая рубка и даже ватерлиния, разделяющая корпус на 2 части: надводную и подводную.
Такая лодка большую часть времени — при долгих морских переходах, «на марше», — находится в надводном положении; под водой проходит только скрытное выполнение задачи.
Рубка когда-то использовалась по назначению
Кроме внешнего («легкого») корпуса для формирования обводов, подводная лодка имеет внутренний («прочный») корпус, который и выдерживает возрастающее с глубиной забортное давление воды.
Для движения дизельных лодок под водой придумали шноркель — трубу, которая позволяет двигателю забирать воздух, необходимый для его работы, над поверхностью воды.
Палуба сохранилась и на современных атомных подводных лодках
Она позволяет увеличить продолжительность подводного хода, но для его реализации требуется достаточно низкая скорость, отсутствие волнения и небольшая глубина погружения.
Для больших глубин используются аккумуляторы, заряжающиеся от дизельного движителя во время его работы.
Проблемы и ограничения эксплуатации дизельных субмарин
Внешний вид и разрез современной дизель-электрической ПЛ проекта 677 «Лада»
Такая конструкция ограничивает возможности дизельных лодок: снижает скорость, время автономной работы. Кроме того, корпус дизельных лодок не позволяет достигать скоростей свыше 50 км/ч.
Аналогично, принципиальная конструкция ограничивает рост габаритов лодки и её грузоподъемность, защиту. А косвенно — и глубину погружения.
Сегодня дизельные субмарины работают только в прибрежной зоне с малым удалением от берега, хотя ещё во времена Второй Мировой войны он бороздили океаны.
Атомный реактор принципиально изменил эксплуатацию подводных судов из-за огромной мощности и буквально неограниченного запаса энергоносителя, что привело к гонке подводного вооружения и появлению двух школ кораблестроения.
Американская и советская школа кораблестроения
Первая атомная подводная лодка Советского Союза «Ленинский Комсомол»
Появление реактора на борту подводной лодки поставило перед разработчиками 3 задачи: увязать возможности реактора с возможностями лодки, обезопасить экипаж и придумать новые способы применения.
Уже первая атомная подводная лодка СССР К-3 «Ленинский комсомол» получила сигарообразный корпус с минимальной верхней палубой и обтекаемую рубку, напоминающую плавник морского животного.
Корпус американского «Наутилуса» похож на дизельных предшественников: заокеанские коллеги изменили внешнюю конструкцию немного позже, использовав наработки эксплуатации первого подводного атомохода.
На этом фоне появилось четкое разделение путей развития АПЛ: американский и советский.
Первая атомная подводная лодка США USS Nautilus
К моменту запуска «Наутилуса» у инженеров США был готов атомный реактор, поэтому они создавали лодку вокруг реактора. Доказанная надежность позволила использовать одну основную силовую установку, дополненную дизельными агрегатами.
Агрегаты заводов Советского Союза создавались в спешке, поэтому К-3 строилась с дублированием силовой установки. Одновременное проектирование агрегатов и самого судна позволило «элегантнее» разместить экипаж и оборудование.
В дальнейшем это привело к принципиальному отличию: у атомных субмарин США всегда один реактор. Российские и советские строились как с одним, так и с двумя реакторами — в зависимости от размеров судна и его назначения.
Как подразделяются и какие задачи выполняют современные АПЛ
Подводные лодки проекта 941 «Акула» рассматривались в роли подводных транспортов
Традиционно среди атомных субмарин выделяют 3 класса и общую категорию специальных кораблей:
1. Многоцелевые лодки (торпедные) — предназначены для уничтожения кораблей и подлодок противника.
2. Лодки с крылатыми ракетами — российские «заточены» для уничтожения авианосцев, американские — для стратегических и тактических неядерных ударов по наземным целям.
3. Стратегические ракетоносцы — предназначены для скрытного автономного плавания с возможностью нанесения ядерного удара, являются силами сдерживания.
4. Специальные суда — спроектированные с нуля либо переоборудованные из боевых судна для выполнения задач исследования морского дна, картографии, задач РЭБ/связи/разведки, прокладывания подводных коммуникаций.
Ракетный подводный крейсер стратегического назначения проекта 667БДР «Кальмар»
Развитие флота во многом заставило объединить первые под названием «многоцелевые АПЛ» благодаря унификации вооружения. Отдельные огромные скоростные «потайные суда» с большой глубиной погружения ещё сохраняются в строю.
Эволюция подводных лодок с атомным реактором
Подводная лодка проекта «Лира»
Развитие атомных субмарин подарило человечеству 5 условных поколений, связанных общими конструктивными чертами и логикой применения:
1. Первое поколение стало родоначальником атомных субмарин, но было достаточно многочисленно и долго стояло на вооружении. Основной общей чертой стала наследуемость с дизель-электрическими предшественниками.
Лодки носили скорее экспериментальный характер, часто предназначались для «боевой отработки» конструкторских идей.
2. Второе поколение стало прямым развитием предыдущего с минимальными изменениями и начинает свой отсчёт в 1967 году.
АПЛ поздней постройки получили «рыбообразную» геометрию корпуса (проект 705 «Лира» в СССР) и комплексные автоматизированные систем управления («Аккорд» на той же лодке), ставшим первым прообразом современного центра управлению сложных систем в виде единого пульта.
Атомная подводная лодка проекта 661 «Анчар»
Серьезной заявкой для АПЛ СССР стал родоначальник «охотников за авианосцами» К-162/222 «Золотая рыбка» проекта 661 «Анчар» с полностью титановым корпусом. Субмарина достигла до сих пор не побитый рекорд скорости в 44,74 узлов (80,4 км/ч).
3. Третье поколение появилось в начале восьмидесятых и характеризуется прежде всего существенно возросшим водоизмещением, повышением автономности, улучшением жизнеобитания команды, а так же унификацию субмарин и их классов.
Американские лодки типа «Огайо» и «Лос-Анджелес» получили реакторы, работающие без перезарядки до 11 лет и не требующие серьезного ремонта в течении всего жизненного цикла — до 30 лет.
Наиболее богатый период кораблестроения: большинство из лодок ещё в строю. Многие из них уникальны, например печально известный рекордсмен проекта 685 «Плавник» К-278 «Комсомолец» с двумя титановыми корпусами и глубиной погружения до 1000 метров.
Ракетонесущий крейсер «Огайо» ВМС США
4. Четвертое поколение на данный момент является наиболее современным, начиная свою историю в начале девяностых. В США представлено только многоцелевыми типами.
Эти аппараты объединяет применение водометных движителей («Сивулф», проект 955), звукопоглощающие покрытия нового типа, новые материалы (композит), реакторы длительного срока службы.
После ряда катастроф подводных лодок предыдущего поколения, проекты получили собственные автономные спасательные капсулы и полностью изолированный реактор.
Возросло и было унифицировано вооружение: так, американские лодки научились хранить до 50 крылатых ракет основных используемых ВМС США типов.
5. Перспективное пятое поколение существует только на бумаге, однако предполагается, что будет включать в себя преимущественно многоцелевые субмарины.
Основным изменением станет атомный реактор с запасом энергии на весь жизненный цикл подводной лодки (в США внедряется в лодках четвертого поколения), полностью композитный корпус, а так же унифицированное вооружение.
Одни и те же пусковые установки будут использовать как баллистические, так и крылатые тактические ракеты, а так же иное неядерное вооружение для выполнения широкого спектра задач.
Общее устройство современной АПЛ
Ракетонесущий атомный подводный крейсер проекта 941 «Акула» в разрезе
Среднестатистическую подводную лодку, бороздящую Мировой океан прямо сейчас, можно описать единой концептуальной схемой. Отдельные агрегаты и линии могут меняться, но сама идея остаётся неизменной с семидесятых годов.
Большинство российских субмарин используют два корпуса (отдельные капсулы в общем) – внутренний из мягкого и прочного титана и внешний из маломагнитной стали. Американские используют один многослойный корпус, разделенный переборками. Как и 50 лет назад.
Между корпусами (у АПЛ США – в общем объеме) расположены ёмкости для воды. При их заполнении лодка опускается, откачка поднимает судно на поверхность. Цистерны можно заполнять одновременно или по-очереди.
Кроме основных, есть так называемые дифферентные цистерны: их заполняют для выравнивания лодки после загрузки и при движении груза. Эта система работает все время, даже под водой при горизонтальном движении.
Многоцелевая АПЛ класса «Вирджиния» ВМС США
Существуют также лодки с корпусом смешанного типа (когда легкий корпус перекрывает основной лишь частично) и многокорпусные (несколько прочных корпусов внутри легкого).
Колоссальные АПЛ проекта 941 «Акула», созданные по принципу катамарана, несут внутри легкого корпуса находятся пять прочных корпусов, два из которых являются основными. Для изготовления прочных корпусов использовали титановые сплавы, а для легкого — стальной.
Переборки между отсеками рассчитаны на давление в 10 атмосфер и сообщаются люками, которые можно герметизировать, если это необходимо. Не все отечественные атомные субмарины имеют так много отсеков.
Для справки: многоцелевая АПЛ проекта 971, например, разделена на шесть отсеков, а новый ракетоносец проекта 955 — на восемь.
Отсеки атомной субмарины и их назначение
Многоцелевая атомная подводная лодка проекта 941 в разрезе
Традиционная компоновка включает от 5 до 8 отсеков (дублируются на лодках проекта 941) со своим назначением и определенной конфигурацией, вплоть до использованных материалов.
1. Первый отсек несет торпедные аппараты и сами торпеды на нескольких палубах, поэтому в зависимости от типа и степени автоматизации лодки может быть необитаем и находиться сразу за легким корпусом.
2. Второй отсек чаще всего используется для размещения радиооборудования: здесь находится центральный пульт управления, пульты гидроакустических систем, регуляторы микроклимата и навигационное спутниковое оборудование.
Именно на втором отсеке размещается рубка, используемая для размещения антенн, перископов. Её основная цель — наблюдение из подводного положения.
3. Третий отсек на современных российских подводных лодках проектов 949А и 955 используется в качестве радиосвязного. Многие ранние типы совмещают его с центральным отсеком управления.
4. Четвертый отсек (он же третий на ряде лодок 3-4 поколений) является жилым: тут размещены каюты экипажа, помещения отдыха, камбуз. В нём проводит время основная часть экипажа, не задействованная в работе на данный момент.
Советские и российские АПЛ между этим и последующим отсеком несет дополнительный отсеки для деконтаминации членов экипажа: очистке одежды членов команды, которые работали в отсеке с реакторами.
Ракетные шахты многоцелевых подводных лодок
5. Пятый (шестой на российских АПЛ) отсеки размещают силовую установку. В зависимости от типа реактора, дизель-генераторы могут находится с ним в одном помещении или в раздельной.
На субмаринах пятого поколения, а так же на американских АПЛ «Сивулф» используется герметичная капсула реактора, которая может полностью изолироваться от остальной лодки.
Самые современные субмарины имеют 7 и 8 отсек, где размещается центр управления реактором и турбинная установка с аккумуляторами. Такая компоновка позволяет исключить контакт с реактором.
Так же в последних отсеках может располагаться автономная капсула для спасения экипажа, созданная по типу спускаемого космического аппарата.
Силовая установка атомной подводной лодки: реактор, турбина и электродвигатель
Базовый принцип работы атомного реактора
Главный агрегат, отличающий атомную от дизельной лодку — реактор. В зависимости от его типа, может варьироваться тип привода.
Вал турбины подключается к валу электродвигателя через редуктор для более эффективного преобразования энергии в электрическую.
В свою очередь, вал электродвигателя при помощи механизма сцепления соединяется с гребным валом. Одновременно с этим часть электроэнергии запасается в бортовых аккумуляторах.
Рабочий отсек АПЛ
Переход энергии молекул пара в кинетическую энергию лопаток приводит к конденсации пара обратно в воду, которая вновь поступает в реактор.
На этом фоне интересно смотрится количество аварий АПЛ. Всего за историю атомного флота затонуло 8 субмарин: 4 советских, 2 российских, 2 американских. Только одна, USS Thresher (SSN-593) — из-за повреждения корпуса.
Печально известный «Курск» проекта 949А «Антей» стал наиболее известной катастрофой российского флота и едва ли не единственной аварией из-за вооружения. Прочие затонули из-за прямых или косвенных проблем с двигательной установкой.
Подводный запуск крылатой ракеты «Томагавк»
Баллистические ракеты АПЛ первого поколения несли моноблочную часть и не отличались большой дальностью и требовали надводный запуск на относительно спокойной воде (при отсутствии бокового ветра).
Лодки США несли по 16 носителей «Поларис» модификаций А1, А2, А3, «Посейдон» С3, «Трайдент 1» С4 с дальностью от 2200 км у А1 до 7400 км у С4. АПЛ Советского Союза несли по 3 ракеты Р-13, впоследствии замененными Р-21 с дальностью всего 650 км и 1420 км.
Пусковые установки баллистических ракет
Второе поколение АПЛ получило ракеты с разделяющейся головной частью (с 3 или с 7 блоками) количеством от 8 до 16 как в СССР, так и в США. Ранние советские ракеты этого поколения Р-29 получили дальность стрельбы 7800 км, более поздние экземпляры Р-29Р — 9000 км/6500 км (моноблок/разделяемая боеголовка).
Третье и четвертое поколение получило от 16 (проект 955) до 24 баллистических ракет (проект 941 «Акула», «Огайо») Р-29РМУ2 «Синева», Р-30 «Булава-30», UGM-133A «Трайдент II» с дальностью до 9-11 тыс. км.
Кроме баллистических ракет, ракетоносцы несут 4-6 торпедных аппаратов калибра 533 или 650 мм для самообороны и запуска специализированных средств: акустических буёв, мин, спецсредств.
Схема подводного запуска баллистической ракеты с подводной лодки типа «Огайо»
Неядерное (условно, многие управляемые боеприпасы имеют или имели разработанную ядерную боеголовку) вооружение атомных лодок с ранних этапов было представлено как торпедами средних и больших калибров, так и крылатыми ракетами.
Интересно: знаменитые российские низколетящие гиперзвуковые ракеты создавались именно для подводных лодок и сначала предназначались для уничтожения кораблей.
Запуск баллистической ракеты UGM-133 Trident-II
Начиная с четвертого поколения АПЛ-охотников оснастили универсальными пусковыми устройствами с барабанными «магазинами» для запуска торпед, крылатых ракет, а так же ракет класса «поверхность-поверхность».
Им на смену приходят унифицированные варианты для упрощенного запуска из торпедных аппаратов: двигатель ракеты при таком запуске включается далеко от АПЛ, а первая стадия запуска происходит как у торпеды, сжатым воздухом.
Эксплуатация атомных подводных лодок
Сухой док для обслуживания АПЛ типа «Огайо»
Появление атомных подводных заставило пересмотреть применение и ремонт подобных типов судов: их подводная часть имеет неподходящие для обычных портов габариты, а реакторы опасны.
Учитывая, что большая часть задач связана с длительным скрытным применением у берегов вероятного противника, поход так же должен начинаться в потайном месте — иначе лодки можно будет отслеживать с начала пути.
Аналогичные рассуждения, необходимость защиты АПЛ от вероятного удара противника, необходимость защиты окружения от возможных проблем с реакторами/вооружением привели к появлению уникальных закрытых баз размером с мегаполис.
Схема подземной базы атомных подводных лодок в Балаклавской бухте
Первая появилась в Балаклавской бухте, заняв собой колоссальную площадь отдельными помещениями, связанными туннелями и каналами: ракеты отдельно, боеголовки отдельно, лодки отдельно.
Ремонт — так же в спецзонах, так как 1-3 поколению лодок требовалась не только замена топлива, но и замена активной зоны реактора. Аналогичные комплексы были созданы уже над водой для каждого океанского флота: в Северодвинске, в Заполярье, в бухте Чажма.
АПЛ США повезло больше: военно-морская база Кингс-Бей вместила всю необходимую инфраструктуру, включая учебные центры и заводы по модернизации в одном месте с погодными условиями, исключающими проблемы во время ремонтных или погрузочных работ.
Российская база подводных лодок
Специализированные базы используются только для длительных остановок АПЛ, ремонта и погрузки ядерных материалов. Все остальное время атомные субмарины снабжаются с плавучих причалов (СССР), судов снабжения (Россия и США), оставаясь почти все время в открытом море.
Современные многоцелевые лодки часто используют обычные военно-морские порты для короткого базирования, уходя на специальные базы только при необходимости — вероятность радиоактивного загрязнения среды при их эксплуатации низкая.
От чего зависит автономность АПЛ?
Атомные подводные лодки и суда сопровождения
Появление ядерного реактора и увеличение объема корпуса подводных лодок после появления атомного реактора на борту позволили кратно в сравнении с дизельными субмаринами увеличить полезную нагрузку.
Вместе с тем — и длительность автономного хода. Считается, что продолжительность автономного похода, как называется одиночное плавание АПЛ, может достигать полугода: примерно столько занимает задача патрулирования берегов вероятного противника.
Причем многие из современных АПЛ до половины этого времени способны находиться под водой. И весь срок не пополнять запасы ни с берега, ни с судов поддержки.
Тем не менее, средний срок похода подводного флота всех государств составляет около 2-3 месяцев.
В зоне отдыха АПЛ проекта 941
Из них не менее четверти времени проходит в надводном состоянии, и не менее половины — в прямой близости с кораблями огневой поддержки и судами снабжения, которые объединяются с АПЛ в единую боевую (патрульную/учебную) группу.
Срок похода ограничивается исходя из опыта эксплуатации, на котором основан запас питания, фильтров для получения пресной воды и чистого воздуха.
Дело в том, что основной сдерживающий фактор длительных автономных походов АПЛ — психологический. Человеку слишком тяжело долгое время находится в замкнутом пространстве узким коллективом.
Кроме того, плавание атомной субмарины требует постоянного контроля и множество типовых работ, расслабляться некогда. В противном случае существовали бы суда, годами находящиеся под водой.
Что ждёт атомные подводные лодки в будущем?
Атомная исследовательская субмарина «Лошарик»
Самые современные российские подводные лодки проекта «Хаски» ещё только проектируются, но уже сейчас понятно, что они наследуют многие из идей, реализованных в судах четвертого поколения, эксплуатирующихся США:
Вероятно, организация пространства таких лодок будет создаваться с оглядкой на проект «Лошарик»: уникальную АПЛ для исследования океанского дна, чей корпус состоит из отдельных шарообразных модулей, из-за чего навевает ассоциации с одноименным советским фильмом.
Отсек АПЛ проекта 941 «Акула»
Уже сегодня понятно, что дублирование реакторных систем останется, а основным движителем станет водомёт, управляемый вторичным электрическим двигателем во время основной работы, и напрямую реакторной турбиной — на скоростном марше.
Стоит ожидать и полностью автоматизированных систем управления, которые позволят сконцентрировать экипаж в одном наиболее защищенном модуле без необходимости постоянных переходов в рабочие отсеки.
Как будет выглядеть такая атомная подводная лодка? Увидим. Но у неё будет очень много общего с космическими кораблями, которые полетят спустя какое-то время.
P.S. Мировой Океан — не менее опасный мир, чем космос. И только атомные подводные лодки приближают нас к грядущим открытиям.
Николай Маслов
Kanban-инженер, радиофизик и музыкант. Рассказываю о технике простым языком.
15 прекрасных вещей с AliExpress. Ёршик для чистки AirPods
УАЗы грязи не боятся. Обзор симулятора бездорожья MudRunner для iOS
Полный обзор сервиса Apple Fitness+. Тренироваться легко, мотивирует отлично
В Telegram появилась реклама. Первое объявление ведёт на канал Дурова
Как выглядят изнутри 7 зданий офиса Apple Park. Есть секретная лаборатория
10 блогеров в TikTok, на которых не стыдно подписаться
10 культовых сериалов 90-х, о которых вы могли даже не знать. Нужно срочно пересмотреть
Обзор двух моделей наушников Bowers & Wilkins PI5 и PI7, которые уже приехали в Россию. Премиум в обалденных цветах
Это самые стильные наушники-вкладыши (они чёрные. ). Marshall Minor III заряжены роком, звучат внушительно
Acer неожиданно выпустил первый электросамокат ES Series 3. Прокатился на нем зимой, теперь хочу лето
🙈 Комментарии 38
Для тех, кому интересно что творится внутри (с военно-морским юмором) рекомендую цикл рассказов “Акулы из стали” )))
Неплохая, подробная, интересная статья. Вот только поправьте написание «а также», несколько раз в статье повторяется раздельно написанное (что во всех этих случаях неверно). Немного бесит. Хотя в других статьях у вас на сайте ошибок обычно ещё больше.
Для понимания масштабов: размеры самой большой АПЛ Акула – 172 х 23 х 26 метров. Почти два футбольных поля в длину, половина футбольного поля в ширину и в высоту!
Спасибо за интересную статью.
Сколько же сил и ресурсов надо тратить только ради того, чтобы одни люди не захотели уничтожать других людей.
Спасибо инженерам за мир во всем мире.
Подкрутим резкость.
Дизель-электрические ПЛ работают не только в прибрежной зоне. Кроме того, уже много лет служат ПЛ с комбинацией дизеля, батарей и воздухонезависимой двигательной установки. Первыми тут были шведы с ПЛ типа «Готланд» с двигателем Стирлинга (в строю с 1996 г) Японцы на ПЛ Soryu также используют двигатели Стирлинга (в строю с 2009 г) а немцы с ВНЕЭУ на топливных элементах (немецкий проект 212А, лодки в строю с 2005 года, также ПЛ этого типа в строю у Италии и Греции)
ВНЭУ позволяет находится под водой до двух недель по сравнению с несколькими днями классической дизель-электрической ПЛ. А на низких скоростях при использовании ВНЭУ шумность таких лодок чрезвычайно низка. В марте 2020 года японцы на 11-й в серии лодки «Сорю»впервые в мире вместо двигателей Стирлинга установили литий-ионные аккумуляторы. К слову в отечественном ВМФ до сих пор нет ПЛ с ВНЭУ.
Первая в мире АПЛ это американская Наутилус. В статье это прозвучало неявно. Советская АПЛ была только третья в мире (после американской же Сивулф)
Эволюция АПЛ по поколениям также стоит поправить. «Рыбообразная геометрия» или добавим «альбакоровский корпус» появился на АПЛ не в 67 г. а в 59-м со вступлением в строй головной USS Skipjack (SSN-585) и головной РПКСН USS George Washington (SSBN-598) с 16 БРПЛ «Поларис». эти РПКСН стали образцом по которому стали строится все лодки такого назначения в мире.
Фото иллюстрирующее запуск БРПЛ «Булава» на самом деле является изображением старта КР «Томагавк»
Очень интересно. Спасибо за статью.
Первой БРПЛ с разделяющейся ГЧ была «Polaris-A3» (три боеголовки рассеивающего типа, без индивидуального наведения, наводился либо один блок или наведение по центру группы БЧ)
Самой «вооруженной» лодкой была и есть американская «Огайо» с 24 ракетными шахтами для БРПЛ (сейчас они несут Трайдент-2, самые надежные в мире БРПЛ) в Союзе в «ответ» появились титанические лодки пр.941 с 20-ракетными шахтами под монструозные твердотопливные Р-39. В СССР захотели тоже твердотопливную БРПЛ в пику американской «Трайдент-1», но она вышла почти в Три раза тяжелей чем американская (90 тонн против 32 тонны у Трайдент-1) и поэтому пришлось ограничиться 20-ю шахтами, но и с таким количеством ракет лодка получилась просто гигантской. Пришлось и всю инфраструктуру делать с нуля включая краны для погрузки ракет. Лодок пр.941 построили шесть штук, три уже утилизировали, одна использовалась для испытания ракет «Булава», судьба двух под вопросом.
Ладно, реклама сработала. Пожалуй куплю одну.
патология на iphones.ru…
раздел «эксплуатация ПЛ» написан весьма наивно:
1. в Балаклаве никогда не было и не будет атомоходов. международные документы не позволяют, да и здравый смысл… подобные штольни начинали строится на Севере, но гибель союза не позволила закончить проекты…
2. большую часть своей жизни лодки стоят у пирса в базе или на ремонте. нет возможности её постоянно гонять, как самолёт, нужно ещё обслуживать… при этом стратеги могут прямо от пирса отстреляться ракетами.
– нет, первой стала БРПЛ «Поларис А-1» первый подводный старт 20 июля 1960 с глубины 20 метров (с борта РПКСН «Джордж Вашингтон»
«Аметист» это ПКР (противокорабельная ракета) принята на вооружение в 1968 году.
ПКР «Гарпун» состоит на вооружении аж с 1977 г. (Версия с подводным стартом с 81 г) КР Томагавк с 83 года. Ничего они сейчас не заменяют) а продолжают модернизироваться (ПКР Гарпун и вовсе доживает последние годы на вооружении в сша)
Отечественный «Циркон» на данный момент испытывается.ТТХ неизвестны (если не принимать внимание пропаганду)
Некие «Знаменитые гиперзвуковые» на данный момент на вооружении не состоят. Сверхзвуковые используется уже давно. Между этими ракетами есть огромная разница.
«Начиная с четвертого поколения АПЛ-охотников оснастили универсальными пусковыми устройствами с барабанными «магазинами» для запуска торпед, крылатых ракет, а так же ракет класса «поверхность-поверхность».
Им на смену приходят унифицированные варианты для упрощенного запуска из торпедных аппаратов: двигатель ракеты при таком запуске включается далеко от АПЛ, а первая стадия запуска происходит как у торпеды, сжатым воздухом»
– для пуска торпед используются торпедные аппараты. Последние также могут применяться для пуска ракет. Некие «универсальные пусковые устройства» а иначе вертикальные шахты (как на ПЛ типа Лос-Анджелес, Вирджиния) используются для КР Томагавк. То есть на подводных лодках имеются и торпедные аппараты (в носовой части) так и шахты для пуска КР, эти шахты не предназначены для пуска торпед.
На отечественных лодках использовались и используются пусковые (расположенные побортно под углом) для тяжелых ПКР (как на печально известном «Курск» Лодки пр. 949 ) а на лодках пр 885 «Ясень» (головная должна быть сдана в 20 году) применяется комбинация классических 533-мм торпедных аппаратов и 8—10 вертикальных шахт для КР
«Интересно: знаменитые российские низколетящие гиперзвуковые ракеты создавались именно для подводных лодок и сначала предназначались для уничтожения кораблей»
Ещё раз. На вооружении состояли и состоят Сверхзвуковые ПКР, никаких Гиперзвуковых нет на вооружении. Циркон с неясными ТТХ ещё проходит испытания.