зачем в космос запускают спутники зачем
Окружающий мир 1 класс 2 часть Зачем люди осваивают космос? стр. 72 – 73
1. Вспомните, какую форму имеет Земля. Что такое Луна? Расскажите, что вы знаете об освоении человеком космоса.
В учебнике «Окружающий мир» для 1 класса говорится о том, зачем люди осваивают космос. Первоклассник узнает о важности космоса для жизни человечества.
Земля имеет форму шара. Такую же форму имеет и Луна, наш единственный спутник, который вращается по орбите вокруг Земли.
Люди начали осваивать космос сравнительно недавно.
В 1961 году на ракете полетел первый человек, космонавт Юрий Гагарин.
Сейчас в космическом пространстве вокруг Земли вращается орбитальная станция. На ней постоянно находится действующий экипаж космонавтов, проводящий различные исследования.
Космонавты проводят различные научные эксперименты, наблюдают за звёздами и солнцем, изучают влияние невесомости на организм.
А также вокруг планеты вращаются тысячи спутников, которые обеспечивают мобильную связь, передают телевизионные сигналы, следят за погодой, помогают спасателям найти заблудившихся людей.
2. Выскажите предположения.
а) Как вы понимаете слова «естественный спутник Земли», «искусственный спутник»?
Естественный — значит природный, возникший сам по себе, от обычных причин. Это Луна, к созданию которой человечество не имеет никакого отношения.
Искусственный — созданный человеком, космический аппарат, запущенный в околоземное пространство, и двигающийся вокруг планеты по орбите.
б) На рисунке космическая станция изображена с большими и широкими «крыльями». Что это за «крылья»? Для чего они нужны?
Это её солнечные батареи.
Они улавливают солнечный свет и преобразуют его в электрический ток, который обогревает станцию и заставляет работать все её приборы.
в) Какие научные исследования проводят на космической станции?
Космонавты ведут наблюдение за Солнцем, звёздами, Луной и Землёй.
Они выращивают растения, исследуют влияние невесомости на организм человека.
И также они исследуют поведение различных материалов, производят ремонт отсеков станции, выходят в открытый космос.
г) Какую работу выполняют искусственные спутники Земли?
Эти спутники передают сигналы сотовой связи и телевидения, навигаторов.
Они следят за изменением погоды на Земле.
Домашнее задание
1. Кто был первым космонавтом?
Им оказался Юрий Гагарин.
2. Зачем космонавты летают в космос?
Они летают, чтобы изучать его, проводить эксперименты для учёных.
3. Зачем в космос запускают спутники?
Они помогают человеку его исследовать. А также помогают поддерживать связь на поверхности планеты.
Доброе утро
Зачем нужны спутники
Код для встраивания видео
Настройки
Плеер автоматически запустится (при технической возможности), если находится в поле видимости на странице
Размер плеера будет автоматически подстроен под размеры блока на странице. Соотношение сторон — 16×9
Плеер будет проигрывать видео в плейлисте после проигрывания выбранного видео
На Западе советский спутник окрестили «бипером» — за характерный звук издаваемый передатчиком. В газетах писали где и когда можно наблюдать первый космический аппарат. За три месяца спутник сделал 1440 оборотов вокруг Земли и сгорел в плотных слоях атмосферы. В музее РКК «Энергия» хранится только макет первого спутника.
За 55 лет спутники научились многому. Благодаря спутникам у нас есть телевидение, интернет и долгосрочный прогноз погоды. Но есть и функции государственной важности. Например, фоторазведка. С помощью сверхчувствительной оптики военные наблюдают за передвижениями противника.
Из главного центра войск космического командования управляют всеми спутниками, в том числе и спутниками, предназначенными для разведки. Такой спутник может «разглядеть» объект размером не больше 10 сантиметров. Так же спутники помогают ориентироваться на местности и спасать людей.
Отечественная навигационная система Глонасс — аналог американской GPS. Но в вопросах государственной безопасности нельзя рассчитывать на зарубежную систему. После серии неудачных запусков российская группировка уже набрала в штатную численность 30 навигационных спутников.
Спутники становятся все более функциональными. Ведутся разработки аппаратов буксиров и заправщиков. Уже скоро повсеместно появится мобильная спутниковая связь, тогда можно будет разговаривать по телефону в любой точки мира без роуминга.
Война спутников: как тысячи роботов собирают информацию обо всем в космосе
Первый искусственный спутник Земли был запущен в 1957 году. С тех пор человечество сделало огромный технологический прорыв: на орбите нашей планеты и за ее пределами находятся тысячи спутников. Рассказываем, как они не сталкиваются друг с другом и зачем их нужно так много.
Читайте «Хайтек» в
Что такое искусственные спутники?
Искусственный спутник Земли (ИСЗ) — космический летательный аппарат, вращающийся вокруг Земли по геоцентрической орбите.
Для движения по орбите вокруг Земли аппарат должен иметь начальную скорость, равную или большую первой космической скорости. Полеты ИСЗ выполняются на высотах до нескольких сотен тысяч километров.
Нижнюю границу высоты полета ИСЗ обуславливает необходимость избегания процесса быстрого торможения в атмосфере. Период обращения спутника по орбите в зависимости от средней высоты полета может составлять от полутора часов до нескольких лет.
Особое значение имеют спутники на геостационарной орбите, период обращения которых строго равен суткам, и поэтому для наземного наблюдателя они неподвижно «висят» на небосклоне, что позволяет избавиться от поворотных устройств в антеннах.
Автоматические межпланетные станции (АМС) и межпланетные космические корабли могут запускаться в дальний космос как минуя стадию спутника (то есть прямое восхождение), так и после предварительного вывода на так называемую опорную орбиту спутника.
В начале космической эры спутники запускались только посредством ракет-носителей, а к концу XX века широкое распространение получил также запуск спутников с борта других спутников — орбитальных станций и космических кораблей (в первую очередь, с МТКК-космоплана Спейс Шаттл).
Как средства выведения спутников теоретически возможны, но пока не реализованы также МТКК-космолеты, космические пушки, космические лифты. Уже через небольшое время после начала космической эры стало обычным выведение более одного спутника на одной ракете-носителе, а к концу 2013 года число выводимых одновременно спутников в некоторых запусках ракет-носителей превысило три десятка.
В ходе некоторых запусков последние ступени ракет-носителей также выходят на орбиту и на какое-то время фактически становятся спутниками.
Беспилотные спутники имеют массу от нескольких килограммов до двух десятков тонн и размер от нескольких сантиметров до (в частности при использовании солнечных батарей и выдвижных антенн) нескольких десятков метров.
Являющиеся спутниками космические корабли и космопланы достигают нескольких десятков тонн и метров, а сборные орбитальные станции — сотен тонн и метров.
В XXI веке с развитием микроминиатюризации и нанотехнологий массовым явлением стало создание сверхмалых спутников форматов кубсат (от одного до несколько килограмм и от нескольких до нескольких десятков сантиметров), а также появился новый формат покеткуб (буквально карманный куб) в несколько сотен или десятков грамм и несколько сантиметров.
Спутники преимущественно создаются как невозвратные, однако некоторые из них (в первую очередь, пилотируемые и некоторые грузовые космические корабли) являются возвращаемыми частично (имея спускаемый аппарат) или полностью (космопланы и спутники, возвращаемые на их борту).
Искусственные спутники Земли широко используются для научных исследований и прикладных задач, а также в образовании (в мире стали массовым явлением так называемые «университетские» ИСЗ) и хобби — радиолюбительские спутники.
Сколько всего сейчас спутников на орбите Земли?
Смотря как считать. Со времени запуска «Спутника» 4 октября 1957 года в космос были выведены более 9 000 аппаратов, но только около 2 000 из них функционируют в настоящее время.
Остальные сгорели в атмосфере или сломались и стали «космическим мусором» на орбите. Поэтому, кстати, бо́льшая часть маневров проводится для уклонения от неуправляемых объектов, а не работающих спутников.
Типы спутников
Различают следующие типы спутников:
Как регулируется движение спутников в космосе?
Единого регламента для этого нет. Космос является свободным пространством. Поэтому участники космической деятельности руководствуются только собственными национальными законами, которые, впрочем, должны соответствовать соглашениям, принятым в рамках работы Комитета по использованию космического пространства в мирных целях ООН (COPUOS).
После принятия в 1974 году конвенции о регистрации космических объектов, запускаемых в космическое пространство, управление по вопросам космического пространства ООН ведет реестр объектов, запускаемых в космическое пространство. Однако регистрация в нем является заявительной, и у ООН нет технической возможности контролировать реальные орбиты и цели космических аппаратов.
Главное препятствие, стоящее на пути создания всеобъемлющей базы данных спутников и возможности автоматизированного контроля околоземного пространства, — это военные спутники. Американская система NORAD не публикует данные о спутниках разведки США, при этом публикует данные об орбитах российских и китайских военных аппаратов. Воздушно-космические силы России вообще ничего не публикуют, хотя следят за американскими военными спутниками радиолокационными и оптическими средствами.
Коммерческим спутниковым операторам сейчас приходится фактически действовать вслепую, надеясь на то, что военные сами не допустят столкновения. При этом именно военные аппараты чаще всего маневрируют на орбите, меняя высоту. Существует даже условный класс «спутников-инспекторов», которые целенаправленно приближаются к чужим аппаратам, чтобы их сфотографировать.
В начале апреля спутники компаний OneWeb и SpaceX уклонились от опасного сближения друг с другом на орбите, об этом заявили представители Космических сил США и OneWeb. Это первая опасная ситуация двух конкурирующих компаний, которые расширяют свои широкополосные сети в космосе.
Исследователи оценивали вероятность столкновения в 1,3%, при этом два спутника приблизились до 57 метров — это опасная близость для спутников на орбите. Если бы спутники столкнулись на орбите, то это могло бы вызвать катастрофу, которая привела бы к образованию сотни кусков мусора, а их траектория бы изменилась, подвергая угрозе другие устройства.
Специалисты также отметили, что сейчас сейчас нет ни одной национальной или глобальной космической организации, которая бы регулировала спутниковых операторов, чтобы они принимать меры в связи с потенциальными столкновениями. У компаний есть только срочные оповещения Космических сил компаниям, которые требуют соблюдать безопасную дистанцию устройств друг от друга.
Как спутники меняют небосклон?
Созвездия спутников и куски космического мусора, двигающиеся по орбите Земли и отражающие солнечный свет, сделали ночное небо на 10% ярче. Об этом говорится в совместном исследовании международной команды астрофизиков.
«Мы ожидали, что увеличение яркости неба будет незначительным, но наши первые теоретические оценки оказались удивительными и таким образом побудили нас незамедлительно сообщить о результатах», — отметил Мирослав Коцифай, старший научный сотрудник Словацкой академии наук и ведущий автор исследования по световому загрязнению.
Ученые считают, что проблема будет только усугубляться по мере того, как в небо будут отправлять все новые спутники. К другим виновникам изменений также относят отработанные ракетные компоненты и другие обломки, которые отражают и рассеивают свет от Солнца.
Где и какие спутники сейчас работают?
Самая густонаселенная орбита — геостационарная (ГСО). Сейчас на ней находятся около 400 спутников, то есть примерно каждый пятый действующий космический аппарат.
Вообще орбиты спутников делятся на низкие (до 2 000 километров от Земли), средние и высокие, и геостационарная относится к последней группе. На низкой орбите летают спутники дистанционного зондирования Земли, спутники связи, например, такие, как Iridium, Globalstar, Orbcomm, российская система «Гонец». На средних располагаются навигационные системы — ГЛОНАСС (Россия), GPS (США), Galileo (Европа) и «Бэйдоу» (Китай).
Популярность геостационарной орбиты — следствие того, что только на ней спутник не меняет своего положения на небе, как бы зависая над выбранной точкой экватора на высоте 35 786 километров. Это позволяет связываться с ним при помощи стационарных наземных антенн, раз и навсегда направленных в одну точку.
В марте 2021 года SpaceX провела серию успешных запусков спутников Starlink, доведя их количество на орбите до 1 300 — около 8% от плана на 2027 год.
SpaceX запускает спутники на орбиту партиями по 60 штук с мая 2019 года, причем в марте 2021-го таких запусков было четыре. Каждый спутник весит 260 кг, а ступень для их запуска рассчитана на 100 миссий: каждый раз она возвращается на плавучую платформу Of Course I Still Love You («Конечно, я все еще люблю тебя») в Атлантическом океане, в 630 км от мыса Канаверал.
Идея состоит в том, чтобы окутать сетью из небольших телеком-спутников всю планету на низкой околоземной орбите — в 500-2000 км от поверхности. Один спутник покрывает небольшую территорию, например, размером с Аляску. Поэтому их запускают группами для покрытия определенной территории. Успех какого-либо низкоорбитального проекта приведет к полному изменению телеком-инфраструктуры во всем мире.
Благодаря постоянному мониторингу Mars Express ученые проанализировали две последние глобальные пыльные бури, в 2007 и 2018 годах. Они сравнили показатели тех лет с годами без бурь, чтобы понять, как штормы повлияли на утечку воды с Марса.
Со сменой сезонов влага замерзает в атмосфере Марса. Однако вместо того, чтобы вернуться на поверхность планеты в виде осадков, происходит иное. В процесс вмешиваются пыльные бури. Они нагревают и разрушают атмосферу Марса, а также доставляют воду на еще большие высоты.
В обоих исследованиях использовались обширные многолетние наборы данных, полученные с помощью прибора SPICAM орбитального аппарата Mars Express.
Метеорологический спутник США NOAA 17, который не был задействован в работе, взорвался в космосе на 16 обломков. Сейчас ученые наблюдают на 16 связанных со взрывом обломков, чтобы они не нарушили работу других объектов. Несут ли угрозу обломки работающим спутникам, не уточняется.
В эскадрилье сообщили: пока нет признака, что произошедшее было вызвано столкновением с другим объектом. По данным ВВС США, до взрыва спутник находился на орбите с минимальной высотой 800 км и максимальной 817 км.
Спутник NOAA 17 был запущен в космос в июне 2002 года и выведен из эксплуатации в 2013 году. Отмечается, что ранее подобные спутники уже разрушались в космосе из-за взрыва бортовых батарей.
Ученые изучили данные с высоким разрешением, собранные спутником ICESat-2 над шельфовым ледником Эймери в период с октября 2018 года по ноябрь 2019 года.
Лазерные импульсы со спутника направляются к поверхности Земли и используют отраженные фотоны для определения высоты поверхности. В отличие от других спутников, разрешение ICESat-2 позволяет ему видеть более мелкие трещины и их морфологию.
Ученые обработали данные спутника с помощью алгоритма. Он идентифицирует поверхностные депрессии льда, чтобы определить местонахождение и охарактеризовать трещины. Напомним, депрессия снеговой линии — ее снижение вследствие климатических изменений, благоприятных для сохранения баланса массы ледников.
Поскольку баланс массы — это прямая функция аккумуляции и абляции, колебания высоты снеговой линии отражают суммарные эффекты изменений температур и атмосферных осадков.
В 2012 году американский технический предприниматель, инженер и изобретатель Грег Уайлер основал WorldVu Satellites — телекоммуникационную компанию, которая должна обеспечить сотни миллионов людей доступом в интернет. Позднее организацию переименовали в OneWeb — в честь одноименного проекта по распространению сети в труднодоступные места.
Корпоративная сеть в космосе и отслеживание поставок: зачем бизнесу спутник и сколько стоит его запустить Статьи редакции
Обзор доступных на рынке предложений по сборке и запуску спутников на орбиту.
Появившаяся в 1958 году спутниковая связь получила широкое развитие по всему миру в начале 1990-х годов. Сейчас даже в странах с развитой инфраструктурой связи около 35% услуг приходится на низкоорбитальные спутниковые системы, что составляет наибольший показатель на рынке телекоммуникаций.
Передача сообщения через спутник на несколько тысяч станций, находящихся в пределах «пятна вещания», стоит столько же, сколько и передача сообщения на одну станцию.
Космические аппараты делят на три вида — по их высоте над Землёй. Виды услуг перечисленных ниже космических аппаратов могут отличаться, но их набор обязательно включает в себя передачу данных и обеспечение связи. Наиболее важные отличия спутников — в территории охвата связи и стоимости вывода на орбиту.
Система из трёх спутников позволяет охватить всю земную поверхность, кроме высокоширотных районов (например, северных).
Потребуется около 20 среднеорбитальных спутников для охвата всей территории Земли.
Система низкоорбитальных спутников должна состоять не менее чем из 50 спутников для покрытия всей территории Земли.
Недостатки низкоорбитальных спутников в основном ограничены лишь большим числом аппаратов, которые выводятся на орбиту, и меньшим сроком их активной эксплуатации (в сравнении с другими спутниковыми системами). Также необходимо учитывать, что до начала коммерческой эксплуатации системы должны быть запущены все спутники (исключён хотя бы один, и связь налажена не будет).
Помимо высоты орбиты, спутники также оценивают по ряду других параметров, например по массе, мощности солнечных батарей и стоимости.
Стоимость спутника определяется двумя основными составляющими: затратами на изготовление (включая разработку) и на запуск. Чем выше его пропускная способность, тем быстрее окупаются все затраты, а доход определяется сроком эксплуатации космического аппарата.
Если речь идёт о создании системы спутниковой связи, представляющей коммерческий интерес, потребуется сотрудничество с более крупными предприятиями ракетно-космической области, такими как «Роскосмос», SpaceX, ArianSpaceо и другие.
Стоимость вывода на орбиту определяется в зависимости от веса спутника связи и расценок сотрудничающей компании. Ниже представлены данные о ракетах-носителях и об оплате запуска спутников определённого веса.
Есть альтернативный вариант: арендовать частотный диапазон уже работающего космического аппарата. В таком случае владельцы спутников (в России диапазоны в аренду предоставляют «Газпром космические системы» и «Космическая связь») сами заказывают постройку аппарата, финансируют производство, запускают спутники на орбиту и обеспечивают их эксплуатацию (корректируют их положение на орбите, управляют бортовым оборудованием).
Помимо покупки полосы частот, арендодателям предстоит построить наземные станции для осуществления связи со спутниками.
Для успешного запуска проекта следует продумать заранее следующие дополнительные расходы:
Что касается набора подходящей команды, помимо отвечающего за проект менеджера, потребуются:
В помощь предпринимателям и энтузиастам есть ряд проектов вроде PocketQube, цель которых — создание специальных наборов для сборки спутников на заказ. Сейчас наибольшее предпочтение отдают именно малым спутникам:
К примеру, чтобы собрать самый простой миниспутник, потребуется:
Есть особая категория наноспутников — кубсат. Популярность этого космического аппарата объясняется модульностью его конструкции и относительной дешевизной. Один кубический блок кубсата (1U) имеет размеры 10 х 10 х 10 сантиметров.
В зависимости от целей предпринимателей существуют разные способы реализации проектов:
Российская низкоорбитальная система персональной спутниковой связи, назначение которой — оказание услуг связи в глобальном масштабе.
Состоит из 45 спутников и предоставляет пользователям следующие виды услуг:
Компания предлагает создать корпоративную сеть в космосе, полностью независимую от местных операторов и максимально кибербезопасную.
Для этого в LeoSat решили оснастить конструкцию искусственного спутника Земли (ИСЗ) очень мощными каналами межспутниковой связи. Размер низкоорбитальной спутниковой группировки определяется 84 спутниками (78 рабочих и шесть резервных).
Планируется, что группировка будет насчитывать до 512 ИСЗ. Президент Telesat Дэн Голдберг выразил мнение, что оптимальной будет комбинация низкоорбитальной и геостационарной группировки для оказания всего спектра телекоммуникационных услуг.
Telesat LEO не собирается сосредотачиваться на одном рынке, а планирует работать на любых — от обеспечения широкополосным интернетом эскимосов на севере Канады до пассажиров самолётов или правительственной связи.
Независимый анализ, проведённый учёными Массачусетского технологического института показал, что Telesat LEO будет располагать в четыре раза большей пропускной способностью, чем система StarLink от SpaceX Илона Маска, и в десять раз больше, чем OneWeb.
Низкоорбитальная спутниковая группировка, по замыслу, будет состоять из 882 ИСЗ, включая резервные. Задача, поставленная основателем проекта OneWeb Грегом Уайлером, состоит в обеспечении глобального покрытия широкополосным интернетом. В пресс-релизах компании говорилось о возможности обеспечить интернетом все школы Африки и Латинской Америки.
По мере развития проекта и появления новых трендов, в число потенциальных инвесторов вошли интернет для автомобилей, интернет на борту самолётов, интернет вещей, обеспечение связи с базовыми станциями нового поколения сотовой связи 5G и многие другие.
Компания SpaceX планирует создать 1574 ИСЗ. В 2015 году Илон Маск заявил: «Мы хотим изменить ситуацию с интернет-трафиком в космосе. Наша цель — сделать так, чтобы около 10% местного и 50% “дальнего” (междугороднего и международного) интернет-трафика шло через спутниковую сеть».
Стоимость необходимых инвестиций неизвестна, однако, по словам президента SpaceX Гвен Шотвелл, компания потратит на проект «$10 млрд или больше».
Как работают спутники?
«Человек должен подняться над Землей — в атмосферу и за ее пределы — ибо только так он полностью поймет мир, в котором живет».
Сократ сделал это наблюдение за века до того, как люди успешно вывели объект на земную орбиту. И все же древнегреческий философ, кажется, понял, насколько ценным может быть вид из космоса, хотя совершенно не знал, как этого достичь.
Этому понятию — о том, как вывести объект «в атмосферу и за ее пределы» — пришлось ждать до тех пор, пока Исаак Ньютон не опубликовал свой знаменитый мысленный эксперимент с пушечным ядром в 1729 году. Выглядит он примерно так:
В октябре 1957 года Советский Союз наконец подтвердил догадку Ньютона, запустив «Спутник-1» — первый искусственный спутник на орбите Земли. Это инициировало космическую гонку и многочисленные запуски объектов, которым предназначалось летать вокруг Земли и других планет Солнечной системы. С момента запуска «Спутника» некоторые страны, по большей части США, Россия и Китай, запустили более 3000 спутников в космос. Некоторые из этих сделанными людьми объектов, например МКС, большие. Другие отлично умещаются в небольшом сундучке. Благодаря спутникам мы получаем прогнозы погоды, смотрим телевизор, сидим в Интернете и звоним по телефону. Даже те спутники, работу которых мы не ощущаем и не видим, отлично служат в пользу военных.
Конечно, запуск и эксплуатация спутников привели к проблемам. Сегодня, учитывая более 1000 рабочих спутников на земной орбите, наш ближайший космический район стал оживленнее, чем крупный город в час пик. Приплюсуйте к этому нерабочее оборудование, заброшенные спутники, части аппаратного обеспечения и фрагменты от взрывов или столкновений, которые наполняют небеса вместе с полезным оборудованием. Этот орбитальный мусор, о котором мы подробно писали, накапливался на протяжении многих лет и представляет серьезную угрозу для спутников, в настоящее время кружащим вокруг Земли, а также для будущих пилотируемых и непилотируемых запусков.
В этой статье мы залезем в кишки обычного спутника и заглянем в его глаза, чтобы увидеть виды нашей планеты, о которых Сократ и Ньютон не могли и мечтать. Но сначала давайте подробнее разберемся, чем, собственно, спутник отличается от других небесных объектов.
Что такое спутник?
Чтобы понять, почему спутники движутся таким образом, мы должны навестить нашего друга Ньютона. Он предположил, что сила гравитации существует между двумя любыми объектами во Вселенной. Если бы этой силы не было, спутники, летящие вблизи планеты, продолжали бы свое движение с одной скоростью и в одном направлении — по прямой. Эта прямая — инерционный путь спутника, который, однако, уравновешивается сильным гравитационным притяжением, направленным к центру планеты.
Иногда орбита спутника выглядит как эллипс, приплюснутый круг, который проходит вокруг двух точек, известных как фокусы. В этом случае работают все те же законы движения, разве что планеты расположены в одном из фокусов. В результате, чистая сила, приложенная к спутнику, не проходит равномерно по всему его пути, и скорость спутника постоянно меняется. Он движется быстро, когда находится ближе всего к планете — в точке перигея (не путать с перигелием), и медленнее, когда находится дальше от планеты — в точке апогея.
Спутники бывают самых разных форм и размеров и выполняют самые разнообразные задачи.
Когда были изобретены спутники?
Ученые не понимали Кларка — до 4 октября 1957 года. Тогда Советский Союз запустил «Спутник-1», первый искусственный спутник, на орбиту Земли. «Спутник» был 58 сантиметров в диаметре, весил 83 килограмма и был выполнен в форме шарика. Хотя это было замечательное достижение, содержание «Спутника» было скудным по сегодняшним меркам:
На внешней стороне «Спутника» четыре штыревые антенны передавали на коротковолновой частоте выше и ниже нынешнего стандарта (27 МГц). Станции слежения на Земле поймали радиосигнал и подтвердили, что крошечный спутник пережил запуск и успешно вышел на курс вокруг нашей планеты. Месяцем позже Советский Союз запустил на орбиту «Спутник-2». Внутри капсулы была собака Лайка.
В декабре 1957 года, отчаянно пытаясь идти в ногу со своими противниками по холодной войне, американские ученые попытались вывести спутник на орбиту вместе с планетой Vanguard. К сожалению, ракета разбилась и сгорела еще на стадии взлета. Вскоре после этого, 31 января 1958 года, США повторили успех СССР, приняв план Вернера фон Брауна, который заключался в выводе спутника Explorer-1 с ракетой U.S. Redstone. Explorer-1 нес инструменты для обнаружения космических лучей и обнаружил в ходе эксперимента Джеймса Ван Аллена из Университета Айовы, что космических лучей гораздо меньше, чем ожидалось. Это привело к открытию двух тороидальных зон (в конечном счете названных в честь Ван Аллена), наполненных заряженными частицами, захваченными магнитным полем Земли.
Воодушевленные этими успехами, некоторые компании начали разрабатывать и запускать спутники в 60-х годах. Одной из них была Hughes Aircraft вместе со звездным инженером Гарольдом Розеном. Розен возглавил команду, которая воплотила идею Кларка — спутник связи, размещенный на орбите Земли таким образом, что мог отражать радиоволны из одного места в другое. В 1961 году NASA заключило контракт с Hughes, чтобы построить серию спутников Syncom (синхронная связь). В июле 1963 года Розен и его коллеги увидели, как Syncom-2 взлетел в космос и вышел на грубую геосинхронную орбиту. Президент Кеннеди использовал новую систему, чтобы поговорить с премьер-министром Нигерии в Африке. Вскоре взлетел и Syncom-3, который на самом деле мог транслировать телевизионный сигнал.
Эпоха спутников началась.
Какая разница между спутником и космическим мусором?
Техногенные объекты, вроде «Спутника» и Explorer, также можно классифицировать как спутники, поскольку они, как и луны, вращаются вокруг планеты. К сожалению, человеческая активность привела к тому, что на орбите Земли оказалось огромное количество мусора. Все эти куски и обломки ведут себя как и крупные ракеты — вращаются вокруг планеты на высокой скорости по круговому или эллиптическому пути. В строгом толковании определения можно каждый такой объект определить как спутник. Но астрономы, как правило, считают спутниками те объекты, которые выполняют полезную функцию. Обломки металла и другой хлам попадают в категорию орбитального мусора.
Орбитальный мусор поступает из многих источников:
NASA вывело специальный спутник под названием LDEF для изучения долгосрочных эффектов от столкновения с космическим мусором. За шесть лет инструменты спутника зарегистрировали около 20 000 столкновений, некоторые из которых были вызваны микрометеоритами, а другие орбитальным мусором. Ученые NASA продолжают анализировать данные LDEF. А вот в Японии уже планируют развернуть гигантскую сеть для отлова космического мусора.
Что внутри обычного спутника?
У всех спутников есть источник питания (обычно солнечные батареи) и аккумуляторы. Массивы солнечных батарей позволяют заряжать аккумуляторы. Новейшие спутники включают и топливные элементы. Энергия спутников очень дорога и крайне ограничена. Ядерные элементы питания обычно используются для отправки космических зондов к другим планетам.
У всех спутников есть бортовой компьютер для контроля и мониторинга различных систем. У всех есть радио и антенна. Как минимум, у большинства спутников есть радиопередатчик и радиоприемник, поэтому экипаж наземной команды может запросить информацию о состоянии спутника и наблюдать за ним. Многие спутники позволяют массу различных вещей: от изменения орбиты до перепрограммирования компьютерной системы.
Как и следовало ожидать, собрать все эти системы воедино — непростая задача. Она занимает годы. Все начинается с определения цели миссии. Определение ее параметров позволяет инженерам собрать нужные инструменты и установить их в правильном порядке. Как только спецификация утверждена (и бюджет), начинается сборка спутника. Она происходит в чистой комнате, в стерильной среде, что позволяет поддерживать нужную температуру и влажность и защищать спутник во время разработки и сборки.
Искусственные спутники, как правило, производятся на заказ. Некоторые компании разработали модульные спутники, то есть конструкции, сборка которых позволяет устанавливать дополнительные элементы согласно спецификации. К примеру, у спутников Boeing 601 было два базовых модуля — шасси для перевозки двигательной подсистемы, электроника и батареи; и набор сотовых полок для хранения оборудования. Эта модульность позволяет инженерам собирать спутники не с нуля, а с заготовки.
Как спутники запускаются на орбиту?
В большинстве запусков спутников запуск ракеты происходит прямо вверх, это позволяет быстрее провести ее через толстый слой атмосферы и минимизировать расход топлива. После того, как ракета взлетает, механизм управления ракеты использует инерциальную систему наведения для расчета необходимых корректировок сопла ракеты, чтобы обеспечить нужный наклон.
После того как ракета выходит в разреженный воздух, на высоту около 193 километров, система навигации выпускает небольшие ракетки, чего достаточно для переворота ракеты в горизонтальное положение. После этого выпускается спутник. Небольшие ракеты выпускаются снова и обеспечивают разницу в расстоянии между ракетой и спутником.
Орбитальная скорость и высота
Ракета должна набрать скорость в 40 320 километров в час, чтобы полностью сбежать от земной гравитации и улететь в космос. Космическая скорость куда больше, чем нужно спутнику на орбите. Они не избегают земной гравитации, а находятся в состоянии баланса. Орбитальная скорость — это скорость, необходимая для поддержания баланса между гравитационным притяжением и инерциальным движением спутника. Это примерно 27 359 километров в час на высоте 242 километра. Без гравитации инерция унесла бы спутник в космос. Даже с гравитацией, если спутник будет двигаться слишком быстро, его унесет в космос. Если спутник будет двигаться слишком медленно, гравитация притянет его обратно к Земле.
Орбитальная скорость спутника зависит от его высоты над Землей. Чем ближе к Земле, тем быстрее скорость. На высоте в 200 километров орбитальная скорость составляет 27 400 километров в час. Для поддержания орбиты на высоте 35 786 километров спутник должен обращаться со скорость 11 300 километров в час. Эта орбитальная скорость позволяет спутнику делать один облет в 24 часа. Поскольку Земля также вращается 24 часа, спутник на высоте в 35 786 километров находится в фиксированной позиции относительно поверхности Земли. Эта позиция называется геостационарной. Геостационарная орбита идеально подходит для метеорологических спутников и спутников связи.
В целом, чем выше орбита, тем дольше спутник может оставаться на ней. На низкой высоте спутник находится в земной атмосфере, которая создает сопротивление. На большой высоте нет практически никакого сопротивления, и спутник, как луна, может находиться на орбите веками.
Типы спутников
Полярно-орбитальные спутники также проходят через полюсы с каждым оборотом, хотя их орбиты менее эллиптические. Полярные орбиты остаются фиксированными в космосе, в то время как вращается Земля. В результате, большая часть Земли проходит под спутником на полярной орбите. Поскольку полярные орбиты дают прекрасный охват планеты, они используются для картографирования и фотографии. Синоптики также полагаются на глобальную сеть полярных спутников, которые облетают наш шар за 12 часов.
Можно также классифицировать спутники по их высоте над земной поверхностью. Исходя из этой схемы, есть три категории:
И наконец, можно подумать о спутниках в том смысле, где они «ищут». Большинство объектов, отправленных в космос за последние несколько десятилетий, смотрят на Землю. У этих спутников есть камеры и оборудование, которое способно видеть наш мир в разных длинах волн света, что позволяет насладиться захватывающим зрелищем в ультрафиолетовых и инфракрасных тонах нашей планеты. Меньше спутников обращают свой взгляд к пространству, где наблюдают за звездами, планетами и галактиками, а также сканируют объекты вроде астероидов и комет, которые могут столкнуться с Землей.
Известные спутники
Однако есть настоящие герои орбиты. Давайте с ними познакомимся.
Сколько стоят спутники?
Строительство такой сложной машины требует массы ресурсов, поэтому исторически только правительственные ведомства и корпорации с глубокими карманами могли войти в спутниковый бизнес. Большая часть стоимости спутника лежит в оборудовании — транспондерах, компьютерах и камерах. Обычный метеорологический спутник стоит около 290 миллионов долларов. Спутник-шпион обойдется на 100 миллионов долларов больше. Добавьте к этому стоимость содержания и ремонта спутников. Компании должны платить за пропускную полосу спутника так же, как владельцы телефонов платят за сотовую связь. Обходится иногда это более чем в 1,5 миллиона долларов в год.
Другим важным фактором является стоимость запуска. Запуск одного спутника в космос может обойтись от 10 до 400 миллионов долларов, в зависимости от аппарата. Ракета Pegasus XL может поднять 443 килограмма на низкую околоземную орбиту за 13,5 миллиона долларов. Запуск тяжелого спутника потребует большей подъемной силы. Ракета Ariane 5G может вывести на низкую орбиту 18 000-килограммовый спутник за 165 миллионов долларов.
Несмотря на затраты и риски, связанные с постройкой, запуском и эксплуатацией спутников, некоторые компании сумели построить целый бизнес на этом. К примеру, Boeing. В 2012 году компания доставила в космос около 10 спутников и получила заказы на более чем семь лет, что принесло ей почти 32 миллиарда долларов дохода.
Будущее спутников
Другое решение — сокращение размера и сложности спутников. Ученые Калтеха и Стэнфордского университета с 1999 года работают над новым типом спутника CubeSat, в основе которого лежат строительные блоки с гранью в 10 сантиметров. Каждый куб содержит готовые компоненты и может объединиться с другими кубиками, чтобы повысить эффективность и снизить нагрузку. Благодаря стандартизации дизайна и сокращению расходов на создание каждого спутника с нуля, один CubeSat может стоить всего 100 000 долларов.
В апреле 2013 года NASA решила проверить этот простой принцип и запустило три CubeSat на базе коммерческих смартфонов. Цель состояла в том, чтобы вывести микроспутники на орбиту на короткое время и сделать несколько снимков на телефоны. Теперь агентство планирует развернуть обширную сеть таких спутников.
Будучи большими или маленькими, спутники будущего должны быть в состоянии эффективно сообщаться с наземными станциями. Исторически сложилось так, что NASA полагалось на радиочастотную связь, но РЧ достигла своего предела, поскольку возник спрос на большую мощность. Чтобы преодолеть это препятствие, ученые NASA разрабатывают систему двусторонней связи на основе лазеров вместо радиоволн. 18 октября 2013 года ученые впервые запустили лазерный луч для передачи данных с Луны на Землю (на расстоянии 384 633 километра) и получили рекордную скорость передачи в 622 мегабита в секунду.