зачем вертолету задний винт
Как устроен вертолет и почему он летает.
Доброго времени суток уважаемый гость. Сегодня, я расскажу Вам, как устроен вертолет, и почему он летает. Прежде всего, давайте определим, что это за зверь. Итак, вертолет или геликоптер – это летательный аппарат тяжелее воздуха.
Как устроен вертолет. Основные части.
Схемы расположения роторов.
Двигатели и органы управления.
Двигатель может быть как поршневой, так и газотурбинный или турбовальный. В кабине пилота находятся органы управления и приборы контроля. К органам управления относятся:
Принцип полета и контроль.
Подъемную силу, позволяющую вертолету летать, создает основной ротор. Лопасти ротора выполнены из легкого прочного материала, с профилем как у крыла самолета. Управление ими осуществляется при помощи автомата перекоса (АП). Который, в свою очередь, контролируется ручкой управления вертолетом и ручкой шаг-газ. У вертолетов (классической) схемы, хвостовой винт, располагается вертикально на конце хвостовой балки летательного аппарата. И, в свою очередь, служит для компенсации реактивного момента от ОР, и поворотов вокруг вертикальной оси.
Управление рулевым винтом, происходит посредством автомата перекоса, связанного с педалями маневрирования по курсу.
Как устроен вертолет. Автомат перекоса.
Теперь, давайте рассмотрим работу (АП) основного ротора. Этот замечательный механизм изобрел русским ученым Б. Н. Юрьевым в 1911 году. Открыв этим путь к вертолетостроению. Именно при помощи этого хитроумного изобретения, вертолеты могут летать передом, задом и даже боком. А самое главное, не переворачиваться при горизонтальном полете.
Маневрирование по тангажу и крену производится за счет изменения угла наклона конуса ОР. Сам же угол наклона конуса изменяется при увеличении угла атаки лопасти в определенном секторе ее вращения. Рассмотрим движение вертолета вперед. Каждая лопасть ОР, проходя в задней четверти, увеличивает угол атаки, а в передней – уменьшает. В результате, подъемная сила в задней четверти больше, а в передней – меньше.
Таким образом, ось вращения несущего винта наклоняется вперед, а вместе с ней наклоняется и весь вертолет. За счет этого наклона и создается горизонтальная составляющая подъемной силы. И вертолет летит вперед. При полетах задом и боком, все происходит точно так же, только углы атаки увеличиваются, и уменьшаются в нужных секторах вращения.
Дальше, еще интересней. Вертолет летит вперед. Что же происходит с подъемной силой справа и слева. Представим, что несущий винт вращается по часовой стрелке. Значит, лопасти в секторе слева имеют условное направление движения вперед, а справа – назад. И вертолет летит вперед. Следовательно, за счет набегающего потока от движения вертолета, скорость левой лопасти больше чем правой. А значит, и подъемная сила, создаваемая левой больше чем – правой. Вот тут то и опять начинает работать автомат перекоса. Он корректирует углы атаки лопастей, движущихся по направлению движения вертолета, и — против. Тем самым уравнивая подъемную силу обеих. И не давая летательному вертолету опрокинуться. Здорово, не правда ли?
Зачем вертолету четыре винта на хвосте
Компания Bell Textron показала прототип системы EDAT, которая видоизменяет наиболее распространенную компоновку винтокрылого аппарата: рулевой винт в хвосте заменяется несколькими электрическими пропеллерами.
В качестве испытательного стенда используется Bell 429 — наиболее новая серийная модель легкого многоцелевого вертолета компании. Машина эта пусть и современная, однако ее конструкция проверена временем, ведь корнями 429-й уходит в далекие шестидесятые, когда небо увидел Bell 206. Этот силуэт знаком, пожалуй каждому — их было построено более 7 300 штук и они появлялись практически в каждом фильме, где есть гражданские винтокрылые машины западного производства.
В XXI веке «дедовская» конструкция претерпела одно из самых серьезных принципиальных изменений. Инженеры отказались от громоздкой трансмиссии, ведущей к хвостовому винту и заменили его четырьмя импеллерами с электромоторами. Инновация называется просто — электрически распределенное подавление крутящего момента (EDAT, Electrically Distributed Anti-Torque). По словам руководителя программы разработки этой системы, Эрика Синусаса (Eric Sinusas), за девять месяцев испытаний вертолет уже налетал 25 часов с таким хвостом, а отзывы летчиков и потенциальных заказчиков весьма положительные.
Отказ от тяжелой и громоздкой трансмиссии, а также механических элементов управления хвостовым винтом, позволил сэкономить не только массу воздушного судна, но и повысить запас мощности главных двигателей. Несмотря на то, что теперь на электросети вертолета добавилось целых четыре «прожорливых» потребителя, суммарно отбираемая от силовой установки энергия снизилась — потерь стало меньше.
Что примечательно, создатели EDAT заявляют также и о снижении общего уровня шума, однако по видео судить о результатах нельзя. Традиционно считается, что импеллер (часто именуемый фенестроном) гораздо шумнее классического рулевого винта без кольца вокруг, а у модернизированного Bell 429 их теперь целых четыре. Зато безопасность модернизированного таким образом вертолета существенно повышается — на земле, даже если главный винт продолжает работать, рулевые не вращаются и не могут никому и ничему навредить.
ХВОСТОВОЙ винт
Хвостовой винт служит для уравновешивания реактивного момента несущего винта и для путевого управления вертолетом. Па вертолетах Ми-4 установлен хвостовой винт В1-ХІУ.
Винт В1-ХІУ — трехлопастный, толкающий, изменяемого в полете шага. Для путевого управления вертолетом при полете на режиме само — вращения винт имеет реверсирование тяги, т. е. может работать, как тянущий.
‘Винт устанавливается на вал хвостового редуктора, расположенного на концевой балке. Управление шагом винта механическое, ножное и производится из кабины летчиков. Изменение шага винта ведет к изменению тяги винта, чем и осуществляется поворот вертолета в ту или другую сторону. При полете вперед или назад направление тяги винта перпендикулярно к направлению полета. Вследствие косого обдува, величина тяти по ометаемому диску переменна.
В целях значительного — уменьшения момента в плоскости — тяти, передаваемого от — винта на фюзеляж (в — случае жесткой заделки лопасти), а также для уменьшения переменных напряжений у лопасти, последние имеют горизонтальные шарниры, с осью, расположенной в плоскости вращения.
При изменении шага лопасть поворачивается в своей заделке — во втулке («осевой шарнир»).
Управление поворотом лопасти осуществляется с помощью кардана, центр которого — расположен одновременно на оси горизонтального и осевого- шарниров лопасти. Во втулке имеется кривошипно-шатунный механизм для преобразования поступательного движения штока управления во вращательное движение лопасти при изменении шага.
На ви-нт-е установлено противо-обледенительное устройство- обеспечивающее нормальную работу винта в условиях обледенения.
Винт — приводится во вращение — от главного редуктора через хвостовой вал; при этом источником мощности может быть как двигатель (нормальный полет), так и — несущий винт (на режиме самовраще-ния). Рабочее число — оборотов винта на вертолете Ми-4 равно 950 — 1130 об/мин.
Основные технические данные винта
Направление вращения винта……………………. левое при виде со сто
Как летает вертолет.
Здравствуйте, друзья!
МИ-1. Первый серийный вертолет в СССР.
Так что же позволяет ей это делать? Ведь вроде бы несуразный по сравнению с самолетом летательный аппарат. Рискуя в который раз повторить самого себя скажу, что на самом деле принцип полета вертолета достаточно прост. И кое-что для его объяснения мы уже знаем.
Слышали, наверное, расхожее выражение «винтокрылая машина»? Оно достаточно правильное. Самолет держит в воздухе крыло, а у вертолета эти функции выполняет винт большого диаметра. Его называют несущим винтом. Каждая лопасть несущего винта представляет собой, по сути дела, крыло, имеющее аэродинамический профиль, и движущееся при вращении винта в воздушном потоке. Вот, пожалуй, принципиально и все :-). Что при этом происходит с крылом мы с Вами уже разобрались здесь и здесь. Возникает аэродинамическая сила, приложенная к каждой лопасти и, как их сумма, общая сила приложенная к винту и через него ко всему вертолету. Сила эта всегда перпендикулярна плоскости вращения винта.
Силы, действующие на вертолет.
Как всегда все элементарно :-). Эту роль выполняет все тот же несущий винт. Если плоскость вращения винта наклонить, то вместе с ней наклонится и суммарная аэродинамическая сила. И теперь ее можно будет разложить на две составляющие: вертикальную, которая поднимает вертолет вверх и держит его в воздухе и горизонтальную, которая заставляет его двигаться вперед. Хотя правильней сказать не вперед, а туда, куда она направлена. Можно и вбок или назад, что вертолет с успехом и делает, кстати.
Вот, собственно, и все. На вопрос о том, как летает вертолет мы ответили. Конечно теория и практика этого вопроса значительно сложнее, но общий принцип полета именно таков.
Скажу, что на самом деле несущий винт вместе с массивной осью и тяжелыми сопутствующими механизмами никуда не отклоняется. Это, мягко говоря, трудно осуществимо и технически нецелесообразно. И тем не менее плоскость вращения винта наклоняется. Говоря вертолетным языком создается «перекос винта». Достигается он за счет изменения положения лопастей, которые подвешены к оси на специальных шарнирах, а управляет этим процессом специальное устройство, называемое «автомат перекоса несущего винта». Все, вертолет полетел… И именно туда, куда нам нужно.
КА-52 Аллигатор. Хвостового винта нет.
Всех эти заумных понятий мы еще очень популярно (и незаумно :-))коснемся в дальнейших наших разговорах, а сейчас я напоследок еще упомяну об одной необходимой вещи. Вы наверняка все видели у вертолетов маленький хвостовой винт и задавали себе вопрос: «Для чего он?». Отвечаю. Я думаю все, даже ярые нелюбители физики слышали про три закона Ньютона. А если не слышали, то поверьте мне на слово, я знаю, что говорю :-). Так вот третий закон в популярной форме гласит: «Каждое действие равно противодействию.» Именно согласно этому выражению возникает так называемый реактивный момент. То есть если несущий винт вертолета вращается, например, вправо, этот момент будет стремиться повернуть корпус вертолета влево (или же наоборот). Чтобы устранить эту совсем ненужную тенденцию и существует хвостовой винт. Он работает, как обычный тянущий самолетный винт и, создавая тягу, обратную реактивному моменту просто его уравновешивает. А если вертолету нужно повернуть, то тяга этого винта меняется за счет поворота его лопастей.
Все. Сказано уже более чем достаточно. Теперь если Вас спросят как летает вертолет, Вы без труда сможете на этот вопрос ответить. И я Вам советую присмотреться к современным типам этого летательного аппарата. Они сейчас развились в некий тип, стоящий в определенном смысле особняком от традиционной авиации и иной раз просто завораживают своим видом и своими возможностями… Хотя, впрочем, продолжение следует…
Соосная компоновка винтов вертолёта: плюсы и минусы
Соосная схема винтов вертолета в современном вертолетостроении применяется не часто. Единственные вертолеты с такой схемой винтов, находящиеся в серийном производстве – российские Ка, в том числе знаменитый Ка-52 «Аллигатор». Но чем объясняется редкость использования соосной схемы винтов?
Как известно, наиболее распространенной в мировом и отечественном вертолетостроении является схема с одним несущим винтом и открытым рулевым винтом, который предназначается для компенсации реактивного момента от несущего винта. Ведь тот «закручивает» вертолет в направлении, противоположном вращению несущего винта.
Безусловным достоинством рулевой схемы является конструктивная простота, сравнительно невысокие затраты на обслуживание и ремонтные работы. Но лишаясь хвостового винта, вертолет теряет управление и падает.
Соосная схема винтов распространена меньше, но ее применение позволяет сделать вертолет более живучим и, соответственно, более приспособленным к выполнению боевых задач. Интересно, что использование соосной схемы – результат работы советских и российских конструкторов.
Первый отечественный вертолет с соосной схемой был представлен в 1948 году. Это был Ка-8 «Иркутянин», выпущенный конструкторским бюро Камова всего в трех экземплярах. Затем выпустили Ка-10 и Ка-15. Последний вертолет стал первым продуктом КБ Камова, поступившим в серийное производство. Так в Советском Союзе начался серийный выпуск вертолетов с соосной схемой винтов.
В отличие от классической одновинтовой схемы, реализовать на практике соосную схему куда сложнее. Эксперты называют ее одним из самых выдающихся достижений отечественного вертолетостроения. Но сложность в конструировании и исполнении компенсируется несомненными преимуществами соосной схемы.
Во-первых, соосные вертолеты обладают меньшими габаритами, высокой компактностью, что увеличивает угловые скорости и делает машину более маневренной. В частности, такой вертолет способен выполнять фигуры «воронка», «косая петля», которые не могут выполнять вертолеты классической схемы с рулевым винтом.
В-третьих, у вертолетов соосной схемы выше коэффициент весовой нагрузки, то есть соотношение полезной нагрузки и общей полетной массы.
Такие характеристики соосных вертолетов обусловили специфику их применения. Вертолеты соосной схемы куда более эффективны в качестве вертолетов палубной авиации, их можно использовать в высокогорных районах с их сложными метеорологическими условиями. Так, Ка-50 активно использовали во время боевых действий на Северном Кавказе.
В то же время, у вертолетов соосной схемы, при всех их неоспоримых достоинствах, есть и определенные минусы. Самый существенный минус для их серийного производства – высокая стоимость. По оценке экспертов, Ми-28 уступает соосному Ка-52 практически по всем характеристикам, но стоимость последнего значительно выше, причем речь идет о миллионах долларов.
Также эксперты отмечают сложность системы управления соосным вертолетом, риск значительных вибраций, недостаточную путевую устойчивость, опасность столкновения вращающихся в противоположных направлениях лопастей.
В настоящее время главным современным ударным боевым вертолетом соосной схемы является Ка-52 «Аллигатор». Эти боевые машины были успешно проверены в Сирии, хорошо показав себя в необычном для России климате. Вертолеты Ка-52 находятся в составе как армейской авиации, так и палубной авиации ВМФ России.