загорелся удлинитель что делать
Что делать с загорающимся удлинителем?
Большинство электрических пожаров вызвано неисправными удлинителями. По мере старения удлинителей и переключателей проводка за ними также изнашивается, а провода натягиваются, что со временем расшатывается и может потенциально порваться и стать причиной пожара. Старые приборы являются виновниками многих электрических пожаров, поскольку они потребляют много энергии, а приборы с изношенными или поврежденными шнурами создают дополнительный риск возникновения пожара. В этой статье мы объясним вам, почему загорелся удлинитель?
Удлинитель, который загорается из-за ветхой или изношенной электропроводки.
Устаревшая электропроводка часто становится причиной возгорания. Если дому более 20 лет, у него может не быть проводки, чтобы справиться с растущим количеством электрических устройств в обычном доме сегодня, таких как компьютеры, широкоэкранные телевизоры, видеоплееры, микроволновые печи и кондиционеры.
Устаревшая бытовая электропроводка не выдерживает повышенной электрической нагрузки. Старые кабели имеют склонность к нагреванию быстро и загореться.
Иногда трудно сказать, старая ли ваша проводка и небезопасна; ведь электромонтажные работы обычно скрываются за стенами вашего дома. Однако помните, что проблемы с электропроводкой представляют собой серьезную угрозу возгорания. Следите за этими признаками скрытых электрических проблем:
Если вы видите изношенные электрические шнуры, их следует немедленно заменить электриком. Те оголенные шнуры, которые проходят по полу или по стенам, могут быть невероятно опасными, если из них выплюнет искра.
Методы профилактики:
Удлинитель, загорающийся из-за перегрузки в электрических цепях.
Неограниченное использование удлинителей представляет собой серьезную опасность пожара. Когда телевизор, домашний кинотеатр, компьютер и другие устройства подключены к одному удлинителю, это создает чрезмерную электрическую нагрузку на одну розетку, которая может быть не рассчитана на такую нагрузку. Это означает, что цепь перегружена, и ваш дом подвергается серьезному риску электрического пожара.
Вот почему важно прилагать сознательные усилия, чтобы никогда не перегружать удлинители. Если у вас недостаточно розеток для удовлетворения ваших потребностей, обеспечьте безопасность своего дома и семьи, попросив надежного электрика установить дополнительные розетки.
Методы профилактики:
Старая бытовая техника
Старые приборы с изношенными шнурами или плохо закрепленной или неисправной проводкой могут загореться. Кроме того, из-за высокой горючести старой изоляции, используемой в этих устройствах; простого ремонта электрооборудования для устранения этих проблем может быть недостаточно. Лучше покупать современные устройства для вашей безопасности.
Если у вас старые устройства, существует риск того, что они могут не соответствовать стандартам по мощности, качеству материалов и безопасности. Плиты, тостеры, холодильники, вся бытовая техника, которую вы можете найти на кухне, могут вызвать электрический пожар. Другая проблема с бытовыми приборами и их корреляция с возгоранием возникает, когда несколько приборов подключаются к удлинителям или к нескольким розеткам, которые не способны обрабатывать большое количество энергии, которое требуется приборам.
Вызовите электрика, чтобы установить розетки, подходящие для бытовой техники и вашего дома. Электрики также могут установить автоматические выключатели GFCI, которые действуют как сетевые фильтры, чтобы обезопасить ваш дом.
Методы профилактики:
Рекомендуемые продукты для удлинителя, который загорается:
В заключение, вот несколько продуктов, которые мы рекомендуем продавать на Amazon.
5 главных причин возгорания электропроводки: чего опасаться, как устранить
Возможно, ваша проводка только кажется вам беспроблемной, но по факту готова вспыхнуть в любой момент. Проверьте ее, пока не случилось страшное.
Одной из самых частных причин пожаров квартирах и домах является возгорание проводки. В свою очередь возгорание проводки может возникать по нескольким причинам. Одни связаны с возрастом проводки и электроустановок, другие же — явные ошибки электриков или хозяев квартир. Мы расскажем, какие наиболее частые причины возгорания проводки могут быть и как их избежать.
1 Старая электропроводка и автоматические выключатели
В большинстве многоэтажных домов, построенных еще в СССР, электропроводка и автоматические выключатели не менялись со времен постройки здания. С годами изоляция проводов теряет свои эксплуатационные свойства и начинает рассыпаться, а там и до контакта недалеко.
Еще чаще, чем из-за старой проводки, может происходить возгорание из-за старого вводного автомата в электрощитке. Зачастую сотрудники энергосбытовых компаний заглядывают в щиток очень редко или не заглядывают вообще. Автомат с годами теряет свои механические свойства и может попросту не сработать на отключение, если на линии произошло КЗ. В результате короткого замыкания по проводке может протекать ток в сотни ампер. Длительное протекание тока такой величины обязательно приведет к горению или оплавлению изоляции проводки.
2 Слабые контакты соединений
Недостаточный (слабый контакт) соединений в распредкоробках, розетках или автоматических выключателей может привести к их нагреву и, соответственно, возгоранию. Если контакты ослабли, то в месте соединения сопротивление растет. Из-за этого провода (или монтажные пластины) начинают греться, а изоляция плавиться.
Причин же слабых контактов может быть огромное множество. Например, электрик при установке розеток, автоматов и распредкоробок слабо их затянул или сделал хлипкие скрутки. Также ослабнуть контакты могут с течением времени под воздействием влаги и кислорода.
Как этого избежать?
Эта запись навеяна комментами в этой теме: www.drive2.ru/c/593470198258912219/
Многие сталкивались с тем, что не размотанный до конца удлинитель на катушке греется и при этом очень сильно. Например:
Но как обычно мир тут разделился на два лагеря — одни говорят что возникает индукция и провод сильно греется из-за этого, вторые активно критикуют и говорят что никакой индукции быть здесь не может, т.к. удлинитель это бифилярная катушка (по 2 провода в каждом витке вместо одного) и якобы в ней индукции не бывает, а провод греется от плохого отвода тепла.
Я отношу себя к первому типу людей и тут постараюсь максимально просто и с доказательствами подтвердить свою версию о том, что в катушке неразмотанного провода возникает индукция, а значит реактивное сопротивление, из-за чего и нагревается провод.
—————
Для начала обсудим первый довод — слабый отвод тепла от провода. По своему опыту могу сказать, что удлинитель на катушке может греться достаточно сильно, так, что рука не терпит. Сторонники довода о плохом отводе тепла в катушке считают, что провод греется так же, как и грелся бы будучи размотанным полностью, просто плохо охлаждается. Но на самом деле конечно это не так. Когда внешняя температура 20, то если провод нагревается до 20, его нагрев рукой будет незаметен, а вот если до 50-60 то будет заметен сразу. И что вы думаете, что если много проводов с температурой 20 градусов сложить вместе виток к витку, то они будут греться до большей температуры? Серьезно? А если две батареи к примеру в которых теплоноситель греется до 60 градусов поставить рядом, прям совсем рядом, можно сказать сварить их между собой — то что их температура станет 120? Очевидно же, что если два тела одной температуры будут греть друг друга, то их общая температура не увеличится, увеличится их теплоемкость. То есть такая двойная батарея просто будет дольше остывать, чем одинарная обычная и все. Энергия не может взяться неоткуда, вот и дополнительный нагрев нельзя объяснить в данном случае просто более худшим охлаждением.
Из своего опыта могу сказать, что я не всегда разматываю весь провод на катушке удлинителя (50 м), при малых нагрузках или непродолжительной работе с ним ничего не будет. Например маломощный садовый триммер не плавит мой удлинитель. Для работы со сваркой я чаще использую другой удлинитель, с таким же сечением провода, но более короткий и всегда его разматываю (10 м), он вообще не хранится в катушке. И при использовании триммера и провод на катушке и провод размотанный с нее одинаковой температуры, рука не чувствует разницу. А вот если сварку включить в катушечный удлинитель и выставив ток 80-100 А поварить 5-10 минут, то провод на катушке уже огненный, а размотанная часть не греется вообще (как и при работе маломощной косилкой). Надеюсь с этим доводом все вполне убедительно.
Да внутренние витки действительно охлаждаются хуже, но при этом, если сам по себе провод нормального сечения под нагрузку, то ни внешние ни внутренние витки провода на катушке не могут менять своей температуры значительно — так, чтобы этим можно было объяснить их сильный нагрев и оплавление. И замечу, что внешние витки так же греются сильно, хотя по логике сторонников этого мнения они вообще-то должны греться слабее, ведь охлаждаться внешней средой им ничего не мешает.
—————
Теперь вторая байка, еще более странная на мой взгляд, про то, что индукции в удлинителе быть не может:
По сути сторонники этого мнения почему-то считают, что ток в фазном и нулевом проводнике течет в разные стороны и это полностью нейтрализует магнитные поля созданные этими проводниками. Я не знаю кто это придумал, т.к. в бытовой сети ток вообще-то переменный и он не имеет направления, точнее его сила и направление меняются постоянно (ну он же переменный!) согласно его частоте (в бытовой сети 50 Гц, то есть 50 раз в секунду). Основанием так же здесь приводится то, что удлинитель это бифилярная катушка и в нем индукции быть не может…
вики: Бифилярная катушка — электромагнитная катушка, которая содержит две близко расположенных, параллельных обмотки.
Некоторые бифилярные катушки намотаны так, что ток в обеих обмотках течёт в одном и том же направлении. Магнитное поле, созданное одной обмоткой, складывается с созданным другой, приводя к большему общему магнитному полю. В других — витки расположены так, чтобы ток протекал в противоположных направлениях. Поэтому магнитное поле, созданное одной обмоткой равно и направлено противоположно созданному другой, приводя к взаимонейтрализации магнитных полей. Это означает, что коэффициент самоиндукции катушки — ноль.
Как мы видим из описания само по себе наличие бифилярной катушки еще не гарантирует отсутствия индукции, более того в этом описании из вики говорится только о направленном токе, то есть о постоянном, а не о переменном из бытовой сети.
Их то может быть 2 вида: бифиляр Тесла и бифиляр Купера. Вообще-то катушка Тесла не имеет отношения к нашему удлинителю, т.к. ее обмотки соединены так: конец одной к началу другой:
По ссылке все очень подробно описано как именно работает каждый тип катушек и в переменном токе и в постоянном, но нам не сложно продублируем и здесь:
Бифиляр Тесла в цепи постоянного тока
При прохождении постоянного тока через катушку, вокруг каждого ее витка возникает постоянное магнитное поле, пропорциональное величине данного тока. И сложив магнитные поля (магнитные индукции B) каждого последующего витка с магнитными полями предыдущих витков, получим суммарное магнитное поле катушки.
В данном случае, для бифиляра Тесла на постоянном токе, не важно что две части катушки соединены друг с другом последовательно, а важно здесь то, что токи в каждом ее витке имеют одинаковые величину и направление, словно катушка намотана одним цельным проводом — индуктивность (коэффициент пропорциональности между током в катушке и порождаемым им магнитным потоком) получается точно такой же, магнитное поле будет аналогичной величины, что и у обычной катушки такой же формы, с таким же количеством витков.
Бифиляр Тесла в цепи переменного тока
При прохождении через катушку типа «бифиляр Тесла» переменного тока, характерная намотка начинает проявлять себя ярко выраженной межвитковой емкостью, которая даже в состоянии «нейтрализовать» индуктивность на резонансной частоте. Витки, расположенные по отношению друг к другу так, что разность потенциалов между ними в каждой паре максимальна, представляют собой аналог параллельно подключенного к катушке конденсатора.
Выходит, что переменный ток определенной (резонансной) частоты такая бифилярная катушка пропустит беспрепятственно, оказав лишь активное сопротивление, словно это параллельный колебательный контур высокой добротности, а не катушка. Будучи включена в цепь параллельно источнику переменной ЭДС, такая катушка в состоянии накапливать энергию на резонансной частоте как параллельный колебательный контур, где энергия пропорциональна квадрату разности потенциалов между соседними витками.
Бифиляр Купера в цепи постоянного тока
У бифилярной катушки, где постоянные токи в соседних витках имеют противоположные направления и одинаковую величину (а именно такая картина наблюдается при постоянном токе в катушке, выполненной по типу «бифиляр Купера»), суммарное магнитное поле катушки окажется равно нулю, так как магнитные поля в каждой паре витков друг друга нейтрализуют. В итоге катушка данного типа будет вести себя по отношению к постоянному току как проводник с чисто активным сопротивлением, и никакой индуктивности не проявит. Так наматывают проволочные резисторы.
Бифиляр Купера в цепи переменного тока
При подаче переменного тока через катушку, витки которой расположены по отношению друг к другу по типу «бифиляра Купера», картина магнитного поля будет зависеть главным образом от частоты тока. И если длина провода в такой катушке окажется соизмерима с длиной волны пропускаемого через нее переменного тока, то и внешнее магнитное поле на такой катушке может быть реально получено как на длинной линии или антенне.
Наш случай — это последний абзац, т.к. смотанный в бобине удлинитель это бифиляр Купера в переменном токе. И говорится там четко, что индукция (внешнее магнитное поле) там будет как на прямой линии только в том случае, если длина провода в ней будет соизмерима с длиной волны. То есть во всех остальных случаях индукцию в бифиляре купера никто не отменял.
Но не будем останавливаться на этом — сколько же длина волны в бытовой сети переменного тока? Например по этой ссылке studref.com/667010/tehnik…na_volny_peremennogo_toka говорится так:
Итого — чтобы в нашем удлинителе (бифиляре купера) в переменном токе с частотой 50 Гц не было индуктивности (и как следствие реактивной составляющей сопротивления и нагрева) длина провода в нем должна быть всего-то 6 тыс. км. Вот и простой ответ на вопрос — есть индуктивность или нет. Я что-то таких длинных переносок и не встречал )))
А вот если увеличить частоту до Мгц, то и длина волны уменьшается значительно и тогда такая катушка купера вполне может начать работать без реактивного сопротивления, что и используется в электротехнике.
Удлинитель
Проблема такая если взять удлинитель, подключить к нему нагрузку, например «болгарку», при этом не сматывать большую часть провода, а оставить на катушке, то может «выбивать» автоматический выключатель (автомат) или если слабый удлинитель может сгореть провод. Однако если провод удлинителя смотать с катушки то все нормально. И это не единичный случай, и говорят, такое случается часто.
Меня пытаются убедить что причина того что «выбивает» автоматический выключатель в том что провод удлинителя смотан витками, получается нечто на подобии дросселя или трансформатора, и это увеличивает ток и напряжение, и как-то связано с магнитной индукцией. В это я ни за что не поверю, так как немножко разбираюсь в Электротехнике.
Не будем брать в учет то, что в трансформаторе и дросселе есть стальной сердечник, который усиливает магнитную индукцию в сотни – тысячи раз (в зависимости от магнитной проницаемости железа). То все равно из удлинителя не получиться дроссель или трансформатор, потому что обмотки расположены по-другому.
На схеме точка обозначает начало обмотки (все витки наматываются в одну сторону), стрелки показывают направление тока. В чем отличие дросселя от удлинителя, в дросселе ток входит в начало первой обмотки, проходит через нагрузку и входит в начало второй обмотки, в удлинителе ток после нагрузки входит в конец второй обмотки.
В дросселе в каждой обмотки направление магнитной индукции в одну сторону, а в удлинителе она противоположна по фазе. Здесь срабатывает эффект резонанса в дросселе магнитная индукция удваивается, а в удлинителе гасится.
Токоизмерительные клещи определяют силу тока по магнитному полю вокруг проводника, и если по пытаться замерить ток в двух жильном кабеле то ничего не получиться, потому что магнитное поле одной жилы гасится магнитным полем другой жилы.
Почему же тогда выбивает автоматический выключатель или горит удлинитель? Это закономерность или случайность? Вопрос остается открытым.
Удлинители и тройники: как найти и починить неисправность?
Обидно, когда дорогой удлинитель вдруг перестает работать. Рассказываем, как его починить, даже, если произошел обрыв провода где-то под изоляцией.
Если ваш удлинитель или сетевой фильтр вышел из строя, не спешите его выбрасывать и покупать новый. Возможно он легко ремонтируется. Нужно лишь найти место повреждения, устранить его или заменить поломанную деталь новой. CHIP расскажет, как найти и починить поломку.
Наиболее частые поломки удлинителей
Условно все поломки удлинителей по локализации можно разделить на три области:
Чаще всего переламывается или отгорает провод на присоединении к вилке или на входе в розеточную колодку. Эту неисправность легко выявить даже визуально и отремонтировать. Хуже, когда повреждение где-то внутри провода под изоляцией, и визуально этого не видно. Если у вас длинный (от 10 м и больше) катушечный или простой удлинитель, то жалко выбрасывать провод, поэтому лучше поднапрячься и отремонтировать его.
На примере обычного китайского удлинителя мы покажем, как можно отремонтировать все эти неисправности. Просто взяли то, что было под рукой — конечно, из-за 200 руб. не стоит тратить кучу времени, но, если у вас хороший удлинитель метров на 30, выбрасывать его откровенно жалко.
Поиск и ремонт поломок
Для выполнения всех манипуляций нам понадобится:
Сначала разбираем все и определяемся с неисправностями. Как видим, вилка у нас неразборная и ее проблема лишь в том, что изначально у ее основания отгорел провод (мы предварительно обрезали сгоревший участок). В колодке с пружинами все в порядке, но на входе также отгорел провод. А вот сам провод у нас где-то переломался и нам нужно найти этот участок.
Для поиска нам понадобятся три иголки и мультиметр. Вначале с помощью режима прозвонки проверяем, какая конкретно жила не работает. В нашем случае — это коричневая жила. Теперь нам нужно найти место пробоя. Для этого мы втыкаем одну иголку в жилу посередине провода и две другие в середину «половинок» провода. Теперь с помощью мультиметра прозваниваем.
Видно, что между первой и второй иголкой потерялся контакт, а значит пробой там. Теперь вынимаем третью иголку и втыкаем между ними, и продолжаем процедуру. Так, в буквальном смысле методом «тыка», узнаем место повреждения (нам хватило 5 раз). Теперь аккуратно разделываем изоляцию и устраняем неисправность путем скрутки с последующей изоляцией.
Теперь разделываем провода на вилке и подсоединяем наш провод. Качественно изолируем, чтоб не было пробоя.
Соединяем провод с розеточной колодкой. Присоединить провод можно двумя способами: пайкой (как это было изначально) или скруткой. Мы воспользуемся вторым вариантом, чтобы показать, как отремонтировать удлинитель без паяльника и припоя.
Зачищаем где-то по 4 см, чтобы можно было намотать на пластину. Кстати пластины свободно вытаскиваются, поэтому свободно берем одну пластину и крепим к ней провод. Провод в месте соединения обжимаем пассатижами. Должно получиться примерно, как на картинке.
Сразу скажем, что это вариант запасной, если нет паяльника под рукой. Если же ремонтируем более толстый кабель, рассчитанный на большую нагрузку, тогда паяем. Для окончательных манипуляций нам потребуется мультиметр.
Теперь собираем удлинитель и проверяем его: сначала прозванием, убеждаясь в отсутствии поврежденных участков, а затем подключаем к сети и проверяем напряжение. Наш удлинитель в рабочем состоянии.
Поиск повреждения в двужильном кабеле с толстой изоляцией
В случае с катушечными удлинителями хитрость с «иглоукалыванием» не пройдет, так как изоляция толстая и просто замучаетесь тыкать в провод. Можно воспользоваться обычным тестером-пробником, с помощью которого можно найти повреждение провода в удлинителе, и даже скрытую в штукатурке проводку. Для этого понадобится прибор со звуковой индикацией (или экранчиком, где отображаются изменения показаний) — цена вопроса 100 — 150 рублей.
Чтобы отыскать повреждение, необходимо включить удлинитель в розетку, а тестер настроить на среднюю или высокую чувствительность. Теперь ведем тестером вдоль кабеля. Там, где напряжение есть, тестер будет пищать, а где появится обрыв, тестер замолчит. Если проводим пробником по всему кабелю, а сигнал не пропадает, значит меняем положение вилки в розетке и выполняем процедуру заново — тестер реагирует только на фазный провод.