законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

4 закона логики

законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

В поле зрения логики как науки о познавательной деятельности пребывают не только формы мышления, но и отношения, возникающие между ними в мыслительном процессе. Дело в том, что не каждая совокупность понятий, суждений, умозаключений дает возможность построить эффективное размышление. Для него обязательными атрибутами являются последовательность, непротиворечивость, обоснованная связь. Эти аспекты, необходимые для эффективных размышлений, призваны обеспечить логические законы.

Логические законы

Чтобы избежать искаженного представления о предмете статьи, укажем, что, говоря об основных законах логики, мы имеем в виду законы формальной логики (тождества, непротиворечия, исключенного третьего, достаточного основания), а не логики предикатов.

Логический закон – внутренняя существенная, необходимая связь между логическими формами в процессе построения размышления. Под логическим законом Аристотель, который, к слову, первым сформулировал три из четырех законов формальной логики, подразумевал предпосылку к объективной, «природной» правильности рассуждения.

Многие учебные материалы часто предлагают следующие формулы для записи основных законов логики:

Стоит помнить, что такое обозначение во многом условно и, как отмечают ученые, не всегда в полной мере способны раскрыть суть самих законов.

1. Закон тождества

Аристотель в своей «Метафизике» указывал на тот факт, что размышление невозможно «если не мыслить каждый раз что-нибудь одно». Большинство современных учебных материалов закон тождества формулирует так: «Любое высказывание (мысль, понятие, суждение) на протяжении всего рассуждения должно сохранять один и тот же смысл».

Отсюда следует важное требование: запрещается тождественные мысли принимать за различные, а различные – за тождественные. Поскольку естественный язык позволяет выражать одну и ту же мысль через различные языковые формы, то это может стать причиной подмены исходного смысла понятий и к замене одной мысли другой.

Чтобы подтвердить закон тождества Аристотель обратился к анализу софизмов – ложных высказываний, которые при поверхностном рассмотрении кажутся правильными. Наиболее известные софизмы, наверное, слышал каждый. Например: «Полупустое есть то же, что и наполовину полное. Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное» или «6 и 3 есть четное и нечетное. 6 и 3 есть девять. Следовательно, 9 есть и четное, и нечетное».

Внешне форма рассуждения правильная, но при анализе хода рассуждения обнаруживается ошибка, связанная с нарушением закона тождества. Так, во втором примере всем понятно, что число 9 не может быть одновременно и четным, и нечетным. Ошибка в том, что союз «и» в условии употребляется в разных значениях: в первом как объединение, одновременная характеристика чисел 6 и 3, а во втором – как арифметическое действие сложения. Отсюда и ошибочность вывода, ведь в процессе рассуждения к предмету были применены разные смыслы. По сути, закон тождества – требование в определенности и неизменности мыслей в процессе рассуждения.

Извлекая будничный смысл из вышесказанного остановимся на понимании того, к чему относится закон тождества. В соответствии с ним всегда стоит помнить, что прежде чем приступить к обсуждению любого вопроса, нужно четко определить его содержание и неизменно ему следовать, не смешивая понятий и избегая двусмысленностей.

Закон тождества не предполагает, что вещи, явления и понятия неизменны в некоторых моментах, он основывается на том, что мысль, зафиксированная в определенном языковом выражении, несмотря на все возможные преобразования, должна оставаться тождественной сама себе в пределах конкретного соображения.

2. Закон непротиворечия (противоречия)

Формально-логический закон непротиворечия основывается на доводе, что два несовместимых друг с другом суждения не могут быть одновременно истинными; как минимум одно из них ложно. Оно вытекает из понимания содержания закона тождества: в одно время, в одном отношении истинными не могут быть два суждения о предмете, если одно из них что-нибудь утверждает о нем, а второе это же отрицает.

Сам Аристотель писал: «Невозможно, чтобы одно и то же одновременно было и не было присуще одному и тому же, в одном и том же смысле».

Разберемся с этим законом на конкретном примере – рассмотрим следующие суждения:

Для того, чтобы определить какое высказывание истинно, обратимся к логике. Можем утверждать, что одновременно оба высказывания быть правдивыми не могут, поскольку являются противоречивыми. Из этого следует, что если доказать истинность одного из них, то второе обязательно будет ошибочным. Если же доказать ошибочность одного, то второе может быть как истинным, так и неправдивым. Чтобы узнать правду, исходные данные достаточно проверить, например, с помощью метрики.

По сути, этот закон запрещает утверждать и отрицать одно и то же одновременно. Внешне закон противоречия может показаться очевидным и вызвать справедливое сомнение по поводу целесообразности выделения столь простого вывода в логический закон. Но здесь есть свои нюансы и связаны они с природой самих противоречий. Так, контактные противоречия (когда что-либо утверждается и отрицается почти в одно и то же время, например, уже следующим предложением в речи) более чем очевидны и практически не встречаются. В отличие от первой разновидности, дистантные противоречия (когда между противоречивыми суждениями находится значительный интервал в речи или тексте) – более распространенные и их нужно избегать.

Чтобы эффективно использовать закон противоречия достаточно правильно учитывать условия его употребления. Основным требованием является соблюдение в высказываемой мысли единства времени и отношения между предметами. Другими словами, нарушением закона непротиворечия не может считаться утвердительное и отрицательное суждения, которые относятся к разному времени или употребляются в разных отношениях. Приведем примеры. Так, высказывания «Москва – столица» и «Москва – не столица» могут быть одновременно правильными, если мы говорим в первом случае о современности, а во втором – об эпохе Петра I, который, как известно, перенес столицу в Санкт-Петербург.

В плане разности отношений истинность противоречивых суждений можно передать на таком примере: «Моя подруга хорошо владеет испанским языком» и «Моя подруга плохо владеет испанским языком». Оба утверждения могут быть истинны, если в момент речи в первом случае говорится об успехах в изучении языка по университетской программе, а во втором о возможности работы профессиональным переводчиком.

Таким образом, закон противоречия фиксирует отношения между противоположными суждениями (логическими противоречиями) и никаким образом не касается противоположных сторон одной сущности. Его знание необходимо для дисциплины процесса мышления и исключения возможных неточностей, которые возникают в случае нарушения.

3. Закон исключенного третьего

Намного «знаменитей», чем предыдущие два закона Аристотеля, в широких кругах, благодаря значительной распространенности сентенции «tertium non datur», что в переводе значит «третьего не дано» и отображает суть закона. Закон исключенного третьего – требование к мыслительному процессу, согласно с которым если в одном из двух выражений что-либо о предмете утверждается, а во втором отрицается – одно из них обязательно истинно.

Аристотель в Книге 3 «Метафизики» писал: «…ничего не может быть посредине между двумя противоречивыми суждениями об одном, каждый отдельный предикат необходимо либо утверждать, либо отрицать». Древнегреческий мудрец отмечал, что закон исключенного третьего применим лишь в случае высказываний, употребленных в прошедшем или настоящем времени и не работает с будущим временем, ведь нельзя сказать с достаточной долей уверенности произойдет или не произойдет что-либо.

Очевидно, что закон непротиворечия и закон исключенного третьего тесно связаны. Действительно, те суждения, которые подходят под действие закона исключенного третьего, подходят и под закон непротиворечия, но не все суждения последнего, попадают под действие первого.

Закон исключенного третьего применим к таким формам суждений:

Одно суждение утверждает что-либо о предмете в одном и том же отношении в одно время, а второе – то же самое отрицает. Например: «Страусы – птицы» и «Страусы – не птицы».

Одно суждение утверждает что-либо относительно всего класса предметов, второе – отрицает это же, но относительно лишь некоторой части предметов. Например: «Все учащиеся группы ИН-14 сдали сессию на отлично» и «Некоторые учащиеся группы ИН-14 не сдали сессию на отлично».

Одно суждение отрицает характеристику класса предметов, а второе эту же характеристику утверждает в отношении некоторой части предметов. Пример: «Ни один житель нашего дома не пользуется Интернетом» и «Некоторые жители нашего дома пользуются Интернетом».

Позже, начиная с эпохи Нового времени, закон был раскритикован. Известная формулировка, применявшаяся для этого: «Насколько верно утверждать, что все лебеди черные, исходя из того, что нам до сих пор встречались только черные?». Дело в том, что закон применим лишь в аристотелевской двузначной логике, которая основывается на абстракции. Поскольку ряд элементов бесконечен, проверить все альтернативы в подобного рода суждениях очень сложно, здесь требуется применение других логических принципов.

4. Закон достаточного основания

Четвертый из основных законов формальной или классической логики был сформулирован по прошествии значительного периода времени после обоснования Аристотелем первых трех. Его автор – видный немецкий ученый (философ, логик, математик, историк; этот список занятий можно продолжить) – Готфрид Вильгельм Лейбниц. В своей работе о простых субстанциях («Монадология», 1714 г.) он писал: «…ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым, – без достаточного основания, почему именно дело обстоит так, а не иначе, хотя эти основания в большинстве случаев вовсе не могут быть нам известны».

Современное определение закона Лейбница основано на понимании, что всякое положение для того, чтобы считаться вполне достоверным, должно быть доказанным; должны быть известны достаточные основания, в силу которых оно считается истинным.

Функциональное предназначение данного закона выражается в требовании соблюдать в мышлении такую черту, как обоснованность. Г. В. Лейбниц, по сути, объединил законы Аристотеля с их условиями определенности, последовательности и непротиворечивости рассуждения, и на основании этого разработал понятие о достаточном основании для того, чтоб характер размышления был логичным. Немецкий логик хотел этим законом показать, что в познавательной или практической деятельности человека рано или поздно наступает момент, когда недостаточно иметь просто истинное утверждение, нужно чтобы оно было обоснованным.

При детальном анализе оказывается, что закон достаточного основания мы применяем в повседневной жизни довольно часто. Делать выводы, основываясь на фактах – значит применять этот закон. Школьник, указывающий в конце реферата список использованной литературы и студент, оформляющий ссылки на источники в курсовой работе – этим они подкрепляют свои выводы и положения, следовательно, используют закон достаточного основания. С тем же самым люди разных профессий сталкиваются в процессе своей работы: доцент – при поиске материала для научной статьи, спичрайтер – при написании речи, прокурор – во время подготовки обвинительного выступления.

Нарушение закона достаточного основания также широко распространено. Иногда причиной тому неграмотность, иногда – специальные уловки с целью получения выгоды (например, построение аргументации с нарушением закона для победы в споре). Как пример, высказывания: «Этот человек не болеет, у него ведь нет кашля» или «Гражданин Иванов не мог совершить преступление, ведь он прекрасный работник, заботливый отец и хороший семьянин». В обоих случаях ясно, что приводимые аргументы в недостаточной мере обосновывают тезис, а, значит, являются прямым нарушением одного из основных законов логики – закона достаточного основания.

Интересуетесь развитием логического мышления и мышления глобально? Обратите внимание на курс «Когнитивистика»».

Отзывы и комментарии

Поделиться своими знаниями в области законов классической логики, порекомендовать литературу для детального ознакомления с ними, а также обсудить данную статью вы можете путем добавления комментария в специальное поле ниже.

Источник

Законы логики: тождество, противоречие, исключенного третьего и закон достаточного обоснования

законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

А) Закон тождества утверждает, что любая мысль (любое рассуждение) обязательно должна быть равна (тождественна) самой себе, т. е. она должна быть ясной, точной, простой, определённой. Говоря иначе, этот закон запрещает путать и подменять понятия в рассуждении (т. е. употреблять одно и то же слово в разных значениях или вкладывать одно и то же значение в разные слова), создавать двусмысленность, уклоняться от темы и т. п. Например, смысл простого, на первый взгляд, высказывания: «Ученики прослушали объяснение учителя», – непонятен, потому что в нём нарушен закон тождества. Ведь слово «прослушали», а значит, и всё высказывание можно понимать двояко: то ли ученики внимательно слушали учителя, то ли всё пропустили мимо ушей (причём первое значение противоположно второму). Получается, что высказывание было одно, а возможных значений у него два, т. е. – нарушается тождество: 1 = 2. Точно так же непонятен смысл фразы: «Из-за рассеянности на турнирах шахматист неоднократно терял очки». Очевидно, что по причине нарушения закона тождества появляются неясные высказывания (суждения).

Символическая запись этого закона выглядит так: a > a (читается: «Если а, то а»), где a – это любое понятие, высказывание или целое рассуждение. Формула: a > a, является тождественно-истинной.

Когда закон тождества нарушается непроизвольно, по незнанию, тогда возникают просто логические ошибки; но когда этот закон нарушается преднамеренно, с целью запутать собеседника и доказать ему какую-нибудь ложную мысль, тогда появляются не просто ошибки, а софизмы. Таким образом, софизм – это внешне правильное доказательство ложной мысли с помощью преднамеренного нарушения логических законов. Приведём пример софизма: «Что лучше: вечное блаженство или бутерброд? Конечно же, вечное блаженство. А что может быть лучше вечного блаженства? Конечно же, ничто! Но бутерброд ведь лучше, чем ничто, следовательно, он лучше вечного блаженства».

Говоря иначе, логический закон противоречия запрещает что-либо утверждать и то же самое отрицать одновременно.

В) Закон достаточного основания утверждает, что любая мысль (тезис) для того, чтобы иметь силу, обязательно должна быть доказана (обоснована) какими-либо аргументами (основаниями), причём эти аргументы должны быть достаточными для доказательства исходной мысли, т. е. она должна вытекать из них с необходимостью (тезис должен с необходимостью следовать из оснований).

Приведём несколько примеров. В рассуждении: «Это вещество является электропроводным (тезис), потому что оно – металл (основание)», – закон достаточного основания не нарушен, так как в данном случае из основания следует тезис (из того, что вещество металл, вытекает, что оно электропроводно). А в рассуждении:

«Сегодня взлётная полоса покрыта льдом (тезис), ведь самолёты сегодня не могут взлететь (основание)», – рассматриваемый закон нарушен, тезис не вытекает из основания (из того, что самолёты не могут взлететь, не вытекает, что взлётная полоса покрыта льдом, ведь самолёты могут не взлететь и по другой причине).

законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

Г) Закон исключенного третьего имеет силу лишь при условии соблюдения требований ранее изложенных законов тождества и противоречия и может быть сформулирован следующим образом: в процессе рассуждения необходимо доводить дело до определенного утверждения или отрицания, в этом случае истинным оказывается одно из двух отрицающих друг друга суждений.

Приведем пример. Допустим, нам надо доказать истинность следующего суждения: «Луна есть спутник планеты Земля». Для этого мы выдвигаем противоречащее суждение: «Луна не есть спутник планеты Земля». Устанавливая ложность этого суждения, мы выдвигаем такой аргумент: если бы Луна не была спутником планеты Земля, она бы не появлялась постоянно на ночном небе в ясную погоду в точно зафиксированных точках пространства. Но так как появление Луны в указанных точках и при указанных условиях есть эмпирический факт, то предположение о том, что Луна не есть спутник Земли, неверно. Следовательно, «Луна есть спутник планеты Земля». Другой аргумент, опровергающий противоречащее суждение: если бы Луна не была спутником планеты Земля, то периодичность приливов и отливов на побережье мировых океанов (6 часов) не имела бы места (не происходила). Но так как приливы и отливы в связи с движением Луны вокруг Земли доказаны наукой, наше допущение о том, что Луна не есть спутник Земли, неверно. Следовательно, истинно, что «Луна есть спутник планеты Земля».

Источник

Законы логики, которые должны знать все

законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

Все мы хотим понять, что правильно, а что нет. Так, фраза «это нелогично» стала чуть ли не самой используемой при критике какого-нибудь сериала или фильма. Но вот о том, что такое логика и как вообще различать, что логично, а что нет, — знают далеко не все. А ведь у неё как у раздела философии есть своё понятие и законы.

Логика по Аристотелю

Древние греки вообще любили рассуждать о том, как устроен наш мир и в чём его смысл. У них это, кстати, получалось вполне неплохо. Так, учёный и философ Левкипп и его ученик Демокрит открыли атомы, не имея при этом наших микроскопов. Сделать это им удалось в том числе благодаря логике.

В Античности очень часто пользовались рассуждениями об объекте для его познания. Строился этот принцип на том, что во Вселенной есть законы, которые человек способен понять через мысли и опыт.

Вот и Аристотель был парень не промах. Он вывел четыре основных закона логики и определил, что это наука, которая является вспомогательной для познания мира. Она изучает законы и форму мышления, ведь только структурировавший своё мышление учёный будет способен совершать открытия.

Первый закон: закон тождества

Суть первого закона в том, что у каждого слова должно быть одно определённое значение. Так как люди выражают информацию в основном при помощи слов, то от того, что мы понимаем под каждым словом, и зависит результат любого диалога, понимание книги, фильма, сериала и так далее. Без точного определения мы попросту не можем правильно выразить свои мысли.

Конечно, так же важен и сам контекст, в котором слово употребляется. Первый закон логики указывает именно на значение слова в один определённый момент в одном определённом месте. Ведь существуют такие слова, как «ключ», «шип» и прочие омонимы, понимание значения которых как раз и зависит от контекста.

Так, например, при нарушении закона логики на фразу «Мне не повезло: я сломал ногу в двух местах» можно было бы ответить: «Так не ходи в эти места», — так как понятие слова «место» заранее не было обговорено. Конечно, подобные мелочи мы редко замечаем в повседневной жизни, так как наше логическое мышление достаточно развито, чтобы находить правильные ответы на простые вопросы.

законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

Второй закон: закон непротиворечивости

Этот закон еще называют законом правильного мышления. Его суть состоит в том, что высказывание и одновременное его отрицание не может быть истиной. Конечно, нужно отличать нарушение второго закона логики от игры слов. Так, обычная фраза строгих мам «закрой рот и ешь» нарушает второй закон, а вот фраза «в моём детстве у меня не было детства» — нет.

Третий закон логики: закон исключённого третьего

Если есть два противоположных суждения, когда одно из них отрицает другое, например А равно Б и А равно не Б, то не может быть иного суждения. Или в другой формулировке:

Если два суждения об одном предмете противоречат друг другу, то они не могут быть одновременно ложными или одновременно истинными. Важно отличать суждения противоречащие и противоположные.

Противоположное суждение может иметь третий вариант ответа. Если мы говорим: «Собака маленькая» и «Собака большая», — возможен третий вариант: «Собака средняя». А в противоречащем суждении мы можем сказать: «Эта собака небольшая» и «Эта собака большая». В этом случае верный ответ только один.

В реальной жизни этот закон применяется при обсуждении любых противоречивых тем. В результате такого диалога оба собеседника будут пытаться формулировать свою мысль так, чтобы она была логичной. Но при этом ответ на обсуждаемый вопрос всегда будет один, следовательно кто-то будет неправ, так как в своём суждении нарушает законы логики. Останется только определить, кто неправ.

законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

Четвёртый закон логики: закон достаточного основания

Любые суждения, высказанные мысли, утверждения и так далее должны иметь твёрдые основания. Выдвинутое утверждение должно иметь достаточно аргументов, чтобы считаться истиной, и, следовательно, само вытекать из аргументов.

Являясь последним из законов, закон достаточного основания вобрал в себя предыдущие. Так как весь наш мир строится на наших суждениях о нём, важно, чтобы каждое суждение было обосновано. Верить во что-то без доказательств — это выбор глупцов, ведь недоказанное суждение стоит мало.

Конечно, для применения этого закона необходимо проверять каждое сомнительное суждение уже доказанными фактами. Так ты значительно уменьшаешь риск быть обманутым.

Источник

4 закона логики, которые помогут определить ложные суждения

законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Смотреть картинку законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Картинка про законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое. Фото законы тождества непротиворечия исключенного третьего достаточного основания обеспечивают такое

В жизни мы часто слышим фразы «это не поддается логике» или «это нелогично». В целом мы понимаем, что речь идет про неверное суждение, ошибочные выводы. Но в чем конкретно нарушена логика — сказать трудно. Существуют 4 закона логики, с помощью которых можно легко отделить ложь от правды. Логика — это древняя наука, появившаяся в 4 веке до н.э., ее основателями были Аристотель, Сократ, Платон и многие другие известные философы, которые усердно изучали законы и формы правильного логического мышления. Давайте разберем на простых примерах значения основных четырех законов логики и как их применить в жизни.

Закон тождества

Любая мысль должна соответствовать самой себе, то есть иметь конкретное значение и быть точной и понятной. Самый известный пример: «ученики прослушали урок». Термин «прослушали» в этом предложение может иметь два определения: то ли ученики ничего не слушали на уроке, то ли, наоборот, внимательно изучали новую тему. Главное, на что необходимо обращать внимание, так это на неоднозначные слова, которые могут иметь несколько значений. Сложнее всего распознать нарушение тождества в сложных утверждениях:

В примере понятие «ничто» в первом варианте означало «отказ от выбора варианта», во втором, как отсутствие чего-либо.

Закон противоречия

Две отрицающих друг друга мысли не могут быть одинаково верными. Например, когда говорят «черный пес» и «белый пес», имея в виду одного и того же пса в одном промежутке времени, то правильным может быть только одно утверждение. В жизни важно выявлять противоречия, отделять игру слов от лжи.

Закон исключенного третьего

Два противоречащих утверждения не должны быть одинаково ложными. Тут важно отличать противоречащие от противоположных утверждений. Первые суждения не имеют третьего варианта, например, большая квартира и небольшая квартира. Противоположные суждения допускают, что возможен и другой вариант, например, «маленькая квартира» и «большая квартира», другой вариант — «средняя квартира». На простых примерах принцип понятен, а вот в жизни противоречащие суждения обычно разделены длинным предисловием, который сбивает с мысли.

Закон достаточного основания

Истинная мысль должна быть основана на аргументах, чтобы быть истинной. Важно, что само утверждение должно следовать из этих фактов. Например, «я готовился к экзамену, поэтому я не заслужил двойку». Один факт не подтверждает утверждение, студент мог просто прочесть лекции и не заучивать нужный материал. Данный закон помогает не делать преждевременных выводов и не верить, например, разной желтой прессе.

Проверьте себя прямо сейчас, как хорошо вы разбираетесь в логике, пройдите бесплатный онлайн-тест на логику.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *