Какая трапеция называется равнобедренной прямоугольной докажите что диагонали прямоугольника равны
Трапеция
Трапеция — это выпуклый четырёхугольник, у которого две противолежащие стороны параллельны друг другу, а две другие не параллельны. Параллельные стороны трапеции называются основаниями, а две другие — боковыми сторонами или боками.
Отрезок, перпендикулярный основаниям трапеции, называется высотой. Отрезок, соединяющий середины боковых сторон трапеции, называется средней линией.
Трапеция может быть равнобедренной или прямоугольной. Равнобедренная (или равнобокая) трапеция — это трапеция, у которой боковые стороны равны. Прямоугольная трапеция — это трапеция, у которой одна из боковых сторон перпендикулярна основаниям.
Площадь трапеции
Площадь трапеции равна произведению полусуммы оснований на высоту.
Формула площади трапеции:
где S — это площадь трапеции, a и b — основания трапеции, h — высота трапеции.
Доказательство. Разделим трапецию на два треугольника, проведя диагональ BD. Получилось два треугольника ΔABD и ΔBCD, имеющих одинаковую высоту — h и основания a и b:
Площади этих треугольников будут вычисляться по следующим формулам:
S1 = | 1 | ah, S2 = | 1 | bh. |
2 | 2 |
Площадь трапеции будет равна сумме площадей треугольников, из которых она состоит, следовательно:
Трапеция
Определения
Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.
Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.
Теоремы: свойства трапеции
2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.
Доказательство
Определение
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Теорема
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
1) Докажем параллельность.
\[MN=MM’+M’N’+N’N=\dfrac12 AB’+B’C’+\dfrac12 C’D=\] \[=\dfrac12 \left(AB’+B’C’+BC+C’D\right)=\dfrac12\left(AD+BC\right)\]
Теорема: свойство произвольной трапеции
Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
2) Докажем, что точки \(N, O, M\) лежат на одной прямой.
\(\triangle BNO\sim \triangle DMO\) по двум углам ( \(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac
Определения
Трапеция называется прямоугольной, если один из ее углов – прямой.
Трапеция называется равнобедренной, если ее боковые стороны равны.
Теоремы: свойства равнобедренной трапеции
1) У равнобедренной трапеции углы при основании равны.
2) Диагонали равнобедренной трапеции равны.
3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.
Доказательство
2)
Теоремы: признаки равнобедренной трапеции
1) Если у трапеции углы при основании равны, то она равнобедренная.
2) Если у трапеции диагонали равны, то она равнобедренная.
Доказательство
Вопросы для повторения к главе V. Четырёхугольники
1. Объясните, какая фигура называется ломаной. Что такое звенья, вершины и длина ломаной?
2. Объясните, какая ломаная называется многоугольником. Что такое вершины, стороны, периметр и диагонали многоугольника?
3. Какой многоугольник называется выпуклым? Объясните, какие углы называются углами выпуклого многоугольника.
4. Выведите формулу для вычисления суммы углов выпуклого n-угольника.
5. Докажите, что сумма внешних углов выпуклого многоугольника, взятых по одному при каждой вершине, равна 360°.
6. Начертите четырёхугольник и покажите его диагонали, противоположные стороны и противоположные вершины.
7. Чему равна сумма углов выпуклого четырёхугольника?
8. Дайте определение параллелограмма. Является ли параллелограмм выпуклым четырёхугольником?
9. Докажите, что в параллелограмме противоположные стороны равны и противоположные углы равны.
10. Докажите, что диагонали параллелограмма точкой пересечения делятся пополам.
11. Сформулируйте и докажите утверждения о признаках параллелограмма.
12. Какой четырёхугольник называется трапецией? Как называются стороны трапеции?
13. Какая трапеция называется равнобедренной? прямоугольной?
14. Какой четырёхугольник называется прямоугольником? Докажите, что диагонали прямоугольника равны.
15. Докажите, что если в параллелограмме диагонали равны, то параллелограмм является прямоугольником.
16. Какой четырёхугольник называется ромбом? Докажите, что диагонали ромба взаимно перпендикулярны и делят его углы пополам.
17. Какой четырёхугольник называется квадратом? Перечислите основные свойства квадрата.
18. Какие две точки называются симметричными относительно данной прямой?
19. Какая фигура называется симметричной относительно данной прямой?
20. Какие две точки называются симметричными относительно данной точки?
21. Какая фигура называется симметричной относительно данной точки?
22. Приведите примеры фигур, обладающих: а) осевой симметрией; б) центральной симметрией; в) и осевой, и центральной симметрией.
Трапеция. Определение, виды, свойства
Определения
Определение 1. Трапецией называется четырехугольник, у которого две стороны параллельны а две другие − нет.
На Рис.1 четырехугольники ABCD и EFGH являются трапециями.
Параллельные стороны трапеции называются основаниями трапеции, а непараллельные стороны − боковыми сторонами (Рис.2).
В трапеции ABCD (Рис.1) углы A и B называют углами при основании AB, а углы C и D называют углами при основании CD.
Определение 2. Высотой трапеции называется перпендикуляр, отпущенный из любой точки прямой, проходящей через один из оснований трапеции, на прямую, проходящую через другое основание.
На Рис.3 отрезки DM, ON, QP являются вершинами трапеции ABCD. Поскольку величина каждой из этих отрезков является расстоянием между параллельными прямыми, проходящими через основания трапеции, то они равны друг другу.
Определение 3. Средней линией трапеции называется отрезок, соединяющий средние точки боковых сторон.
На рисунке Рис.4 \( \small MN \) является средней линией трапеции \( \small ABCD, \) причем \( \small AM=MD,\;\; BN=NC. \)
Виды трапеций
Если боковые стороны трапеции равны, то трапеция называется равнобокой или равнобедренной (Рис.5).
Трапеция называется прямоугольной, если одна из боковых сторон перпендикуляна основаниям трапеции (Рис.6).
Трапеция называется разносторонней, если длина всех сторон разные (т.е. если трапеция не прямоульная и не равнобедренная)(Рис.7).
Свойства трапеции
Свойство 1. Средняя линия трапеции параллельна основаниям и равна половине их суммы.
Доказательство. Пусть MN средняя линия трапеции ABCD (Рис.8). Докажем, что \( \small MN || AB, \) \( \small MN=\frac12 (AB+CD). \)
Проведем прямую DN и обозначим точку ее пересечения с прямой AB точкой P. Так как MN является средней линией трапеции ABCD, то
Углы 3 и 4 являются накрест лежащими, при рассмотрении параллельных прямых BP и CD пересеченные секущей CB, тогда (теорема 1 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей).
Исходя из равенств (1),(2) и (3) получим, что треугольники CND и NPC равны, по второму признаку равенства треугольников. Тогда BP = DC, DN = NP. Из равенств AM = MD и DN = NP следует, что MN является средней линией треугольника ADP. Тогда \( \small MN \ || \ AP \) ( или \( \small MN \ || \ AB \)) и \( \small MN =\frac 12 AP \). Но \( \small AP=AB +BP=AB+CD \). Тогда \( \small MN =\frac 12 (AB+CD).\)
Свойство 2. Сумма углов трапеции, прилежащих к одной боковой стороне равна 180°.
Доказательство. Рассмотрим трапецию ABCD (Рис.9).
Углы A и D являутся односторонними углами, при рассмотрении параллельных прямых AB и CD пересеченные секущей AD (теорема 3 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Тогда \( \small \angle A+ \angle D=180°.\)
Свойство 3. Отрезок, слединяющий середины диагоналей трапеции лежит на средней линии трапеции и равен половине разности оснований.
Доказательство. Рассмотрим трапецию ABCD (Рис.10).
Поскольку точки P и Q являются средними точками диагоналей AC и BD, соответственно, то:
MP − является средней линией треугольника ADC, так как ,
. Тогда
QN − является средней линией треугольника BCD, так как ,
Тогда
Из и
следует, что P находится на прямой, проходящей через среднюю линию MN, поскольку из точки M можно провести только одну прямую, параллельно CD (Аксиома 1 статьи Аксиома параллельных прямых).
Аналогично, из и
следует, что Q находится на прямой, проходящей через среднюю линию MN, поскольку из точки N можно провести только одну прямую, параллельно CD.
Далее, учитывая (4) и (5), получим:
Далее, учитывая свойство 1, получим:
Свойства равнобокой (равнобедренной) трапеции
Свойсво 1′. В равнобокой трапеции углы при каждом основании равны.
Доказательство. Рассмотрим равнобедренную (равнобокую) трапецию ABCD, где AD = BC (Рис.11).
Проведем высоты DM и CN. Поскольку DM = CN и AD = BC, то прямоугольники ADM и NCB равны гипотенузе и катету (см. статью Прямоугольный треугольник. Свойства, признаки равенства). Тогда \( \small \angle A=\angle B. \) Докажем, далее, что \( \small \angle ADC=\angle DCB. \) \( \small \angle A +\angle ADC=180° \) поскольку углы A и ADC являются односторонними углами, при рассмотрении параллельных прямых AB и CD пересеченные секущей AD (теорема 3 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Аналогично \( \small \angle B +\angle DCB=180°. \) Учитывая, что \( \small \angle A=\angle B \), получим \( \small \angle ADC=\angle DCB. \)
Свойсво 2′. В равнобокой трапеции диагонали равны.
Доказательство. Рассмотрим треугольники ADC и DCB (Рис.12). Имеем CD общая сторона для обеих треугольников, AD = CB, \( \small \angle ADC=\angle DCB. \) Тогда треугольники равны по двум сторонам и углу между ними. Следовательно диагонали AC и DB трапеции ABCD равны.
Свойсво 3′. В равнобокой трапеции высота, приведенная из вершины тупого угла на основание, делит основание трапеции на отрезки, больший из которых равен половине суммы оснований, а меньший равен половине разности оснований.
Доказательство. Рассмотрим четырехугольник DMNC (Рис.11). Имеем:
Тогда четырехугольник DMNC является прямоугольником. Следовательно DC = MN. Поскольку треугольники ADM и NCB равны (см. доказательство следствия 1), то AM = NB. Следовательно:
Геометрия
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Трапеция
Рассмотрим четырехуг-к, у которого параллельны только две стороны, а две оставшиеся не параллельны. Такая фигура именуется трапецией.
На рисунке трапеция выглядит следующим образом:
Параллельные стороны именуются основаниями трапеции, а другие две – это боковые стороны.
Обратите особое внимание на то, что одно из оснований всегда больше второго основания. Действительно, если бы основания имели одинаковую длину, то получился бы четырехуг-к, у которого две противоположные стороны и равны, и параллельны. Однако это уже один из признаков параллелограмма, а параллелограмм никак не может быть трапецией.
Иногда полезно представлять трапецию как усеченный треуг-к. Действительно, если в треугольнике провести линию, параллельную одной из сторон и пересекающую две остальные стороны, то она как бы «отсечет» верхушку этого треуг-ка, и получится трапеция. И наоборот, любую заданную трапецию можно достроить до треугольника:
Сумма всех 4 углов трапеции составляет, как и у любого четырехугольника, 360°.
Задание. Известно, что у трапеции АВСD АD||ВС, ∠А = 36°, ∠С = 117°. Найдите∠В и ∠D.
Решение: АВ можно рассматривать как секущую параллельных прямых ВС и АD. Но тогда∠А и ∠В будут являться односторонними, а их сумма будет равна 180°. Отсюда можно найти ∠В:
Аналогично, рассматривая в качестве секущей СD, можно найти и ∠D, который вместе с∠С является односторонним:
Средняя линия трапеции
Если отметить середину каждой из боковых сторон трапеции, а потом соединить эти середины, то получится отрезок, именуемый средней линией трапеции.
Докажем важную теорему, связанную со средней линией:
Для этого изучим трапецию АВСD, у которой боковые стороны – это АВ и CD. Пусть М – середина АВ. Проведем через М прямую, параллельную основаниям, которая пересечет СD в точке N. По теореме Фалеса параллельные друг другу прямые АD, МN и ВС отсекут на прямой СD равные отрезки, то есть СN = ND. Но это означает, что N– середина CD, а тогда MN – средняя линия (согласно ее определению). Естественно, что в трапеции возможно построить только одну среднюю линию, а значит, средняя линия МN параллельна каждому из оснований.
Прямоугольная и равнобедренная трапеция
Существует два частных вида трапеции, обладающих особыми свойствами. Первый из них – это прямоугольная трапеция. Она отличается тем, что один из ее углов равен 90°.
Здесь∠А = 90°. Легко догадаться, что на самом деле если у трапеции хоть один угол составляет 90°, то найдется и ещё один угол, также равный 90°. В данном случае это ∠В. Сумма ∠A и ∠D должна составлять 180°, ведь они односторонние. Именно поэтому из условия
Задание. Основания прямоугольной трапеции имеют длину 10 и 15 см, а один из углов составляет 45°. Вычислите длину ее наименьшей боковой стороны?
Пусть основания заданной трапеции – это отрезки АD и ВС, ∠А = 45°, ∠D = ∠C = 90°. Опустим из точки В перпендикуляр ВН на АD:
Очевидно, что ВН||CD, ведь эти отрезки перпендикулярны одной прямой АD. Получается, что в четырехуг-ке НВСD противоположные стороны попарно параллельны, то есть он является параллелограммом. Отсюда вытекает равенство его сторон:
Нашли СD, но является ли этот отрезок именно меньшей боковой стороной трапеции? Для ответа на этот вопрос вернемся к ∆АВН. В нем АВ – это гипотенуза, а потому она заведомо больше катета ВН, то есть больше 5 см. Значит, именно CD – это меньшая боковая сторона.
Ещё один особый вид трапеции – равнобедренная трапеция. Она отличается тем, что у неё длины боковых сторон одинаковы.
Равнобедренная трапеция обладает рядом интересных свойств. Начнем с того, что углы при каждом из ее оснований равны.
В итоге мы получили четырехуг-к АВСН, в котором АВ||CН, ВС||АН. Это значит, что он является параллелограммом, и тогда
Отсюда сразу же вытекает и второе свойство равнобедренной трапеции – у неё равные диагонали.
Действительно, треуг-ки ∆АВD и ∆АСD равны, ведь
Оказывается, есть признаки, которые позволяют определить, является ли трапеция равнобедренной. Сформулируем первый из них:
Для доказательства снова построим в трапеции АВСD такую прямую СН, что СН||АВ:
Несколько сложнее доказать другую теорему:
Пусть в трапеции АВCD одинаковы диагонали ВD и АС. Для определенности будем считать, что большее основание – это АD. Опустим из точек В и С перпендикуляры ВЕ и СF на АD:
Ясно, что эти перпендикуляры параллельны друг другу, ведь они перпендикулярны третьей прямой. Тогда в ВСFЕ противоположные стороны параллельны, то есть эта фигура – параллелограмм. Отсюда вытекает, что
Далее рассмотрим ∆ВЕD и ∆АСF. Они оба являются прямоугольными, у них одинаковы гипотенузы (АС = ВD), а также и катеты ВЕ и СF. Значит, эти треуг-ки равны, следовательно,
Задание. Один из углов равнобедренной трапеции составляет 55°. Найдите все остальные углы этой трапеции.
Решение. Проще всего найти ∠D, ведь углы при основании равнобедренной трапеции одинаковы:
Заметим одно важное обстоятельство. Если достроить равнобедренную трапецию до треугольника, продолжив ее боковые стороны, то получится равнобедренный треуг-к:
Действительно, если АВСD – равнобедренная трапеция, то
Пусть продолжения боковых сторон пересеклись в некоторой точке Е. Тогда в ∆АЕD два угла, ∠А и ∠D, окажутся равными, следовательно, ∆АЕD– равнобедренный.
Прямоугольник
Следующим особым четырехугольником является прямоугольник (иногда его сокращенно обозначают как прямоуг-к). Его отличительный признак заключается в том, что все его углы – прямые.
Продемонстрируем несколько прямоугольников:
Очевидно, что у прямоуг-ка противоположные стороны параллельны, ведь они перпендикулярны одной и той же прямой. Следовательно, всякий прямоуг-к одновременно является параллелограммом и обладает всеми его свойствами. Стоит особо отметить, что обратное утверждение неверно – отнюдь не всякий параллелограмм является прямоугольником. Другими словами, прямоугольник – это частный случай параллелограмма, который отличается тем, что его углы составляют 90°.
Из этого вытекает два свойства прямоугольника:
Однако есть ещё одно свойство, которое НЕ характерно для остальных параллелограммов.
Доказать это очень просто. Пусть есть прямоугольник АВCD:
Сравним ∆АВD и ∆АСD. Они являются прямоугольными, у них есть общий катет АD, а два других катете, АВ и СD, равны как противоположные стороны прямоугольника. Получается, что рассматриваемые треуг-ники равны, и поэтому равны и их гипотенузы, которые как раз и являются диагоналями прямоугольника.
Оказывается, верна и обратная теорема, которую называют признаком прямоугольника:
Действительно, пусть есть некоторый параллелограмм АВCD, у которого одинаковы диагонали АС и BD.
Противоположные стороны в одном параллелограмме одинаковы:
В итоге все углы АВСD оказываются прямыми, и эта фигура по определению оказывается прямоуг-ком.
Задание. В прямоуг-ке ABCD проведена биссектриса, которая делит сторону СD на отрезки СК и КD длиной 27 и 45 см соответственно. Найдите периметр АВCD.
Решение.Для нахождения периметра необходимо найти длины всех сторон.
Если АК – биссектриса, то
∆КАD является прямоугольным, и мы только что нашли один из его острых углов. Тогда можно найти и 2-ой угол:
Получается, что в ∆АКD два угла равны 45°, значит, он является равнобедренным, и
Мы нашли две смежные стороны прямоугольника, АD и СD. Две другие стороны будут им равны:
Следующая особенная фигура – это ромб. Дадим определение ромба:
На рисунке видно, что ромб похож на параллелограмм, и это не случайно. Докажем, что любой ромб является частным случаем параллелограмма. Но прежде заметим, что обратное утверждение неверно – отнюдь не каждый параллелограмм является ромбом.
Для доказательства этого факта проведем диагональ ромба:
В результате получилось два треуг-ка: ∆АВС и ∆АСD. Можно заметить два факта. Во-первых, каждый из этих треуг-ков – равнобедренный, ведь стороны ромба равны. Тогда можно записать равенство углов:
Из равенства треуг-ков вытекает и равенство углов:
Тогда очевидно, что ∠А и ∠С также равны, ведь они состоят из двух равных углов:
В итоге получается, что в ромбе противоположные углы одинаковы. Зная, что все 4 угла в сумме дают 360°, легко найдем сумму каких-нибудь двух смежных углов:
Итак, сумма смежных углов в ромбе равна 180°. Но эти углы можно рассматривать как односторонние. Если их сумма равна 180°, то и соответствующие прямые (в частности, ВС и АD) параллельны. Аналогично доказывается и то, что АВ||CD. Это и значит, что АВСD– параллелограмм.
Продолжим рассматривать построенный нами рисунок, но добавим в него ещё одну диагональ:
Во-первых, мы уже доказали следующее равенство
Из него вытекает, что диагональ АС является биссектрисой для∠А и ∠С. Аналогично и для диагонали ВD можно показать, что и она разбивает ∠В и ∠D пополам. Можно сформулировать следующее свойство ромба:
Далее рассмотрим ∆АВD. Он равнобедренный, а АО является биссектрисой, падающей на основание ВD. Но в равнобедренном треуг-ке такая биссектриса одновременно является высотой, то есть
Получается, что диагонали всякого ромба обязательно пересекаются под прямым углом.
Задание. Длина стороны ромба совпадает с длиной одной из его диагоналей. Определите углы этого ромба.
Решение. Построим рисунок по условию задачи:
Легко заметить, что∆АВС и ∆АСD будут равносторонними. Однако все углы равностороннего треуг-ка равны 60°:
Итак, два угла ромба будут равны 60°, а другие два 120°.
Квадрат
Последний особый случай четырехугольника – это квадрат. Эта фигура, которая сразу является и прямоугольником, и ромбом. Естественно, что любой квадрат одновременно является параллелограммом. Дадим определение квадрата:
Свойства квадрата – это совокупность свойств параллелограмма, ромба и прямоуг-ка.Это значит, что его диагонали:
Задание. Середины сторон квадрата соединили отрезками. Докажите, что получившаяся фигура также является квадратом.
Решение. Требуется доказать, что фигура, показанная красным цветом, является квадратом:
Так как стороны квадрата одинаковы, то одинаковы и их половины:
Получается, что ∆АМН, ∆МВР, ∆РСК и ∆КНD – прямоугольные, причем у них равны все катеты. Это значит, что, с одной стороны, они являются равнобедренными треуг-ками, а с другой стороны, они равны друг другу. Мы уже знаем, что у равнобедренного прямоугольного треуг-ка углы при основании составляют по 45°, а из равенства треуг-ков вытекает, что
Получается, что у четырехуг-ка МРКН все стороны одинаковы, то есть он является ромбом. Осталось доказать, что все его углы прямые. Рассмотрим, например, ∠РМН. Он в сумме с ∠ВМР и ∠АМН дает 180°, что позволяет вычислить его:
Итак, все углы ромба МРКН прямые, значит, он является квадратом.
Мы видим, что есть множество видов четырехугольников, причем часто одна и та же фигура может относиться сразу к нескольким типам. Для наглядности покажем на одной картинке всю иерархию четырехугольников. Здесь на одном рисунке можно увидеть название всех видов четырехугольников, их форму, также главное свойство, по которым их и определяют:
Симметрия
В заключение рассмотрим также такое важное геометрическое понятие, как симметрия.
В случае, показанном на рисунке,А1 и А2 не лежат на b. Если же рассматривается точка, лежащая на b, то она считается симметричной самой себе. На рисунке пары точек А и B, C и D, M и N симметричны относительно b.Для точки же Р нельзя найти парную ей симметричную точку. Поэтому условно считается, что она симметрична сама себе.
Теперь перейдем к такому понятию, как симметричная фигура.
В качестве иллюстрации приведем равнобедренный треуг-к. У него роль оси симметрии играет медиана, проведенная к основанию. Выберем на треугольнике произвольные точки А1, В1, С1 и D1. Далее отметим симметричные им относительно b точки, которые обозначим как А2, В2, С2 и D2. Видно, что они также принадлежат треугольнику:
Рассмотрим для иллюстрации и какую-нибудь несимметричную фигуру, например, треугольник с 3 разными сторонами:
Видно, что например, для точка А1 симметричная ей А2 НЕ принадлежит треугольнику, поэтому красная линия НЕ является осью симметрии.
Осевая симметрия присуща и многим другим фигурам:
Обратите внимание, что осей симметрии фигуры может быть несколько. У ромба их две (это его диагонали), у квадрата уже четыре (помимо диагоналей добавляются ещё и линии, соединяющие середины его противоположных сторон), а у окружности их и вовсе бесконечно много, так как любой ее диаметр может играть эту роль.
Возможен ещё один случай симметрии:
На приведенном рисунке С – это середина АВ, поэтому А и В симметричны, а точка С для них является центром симметрии.
Снова перейдем от отдельных точек к фигурам.
В частности, центральная симметрия присуща параллелограмму (его центром симметрии будет точка, в которой пересекаются его диагонали), а также окружность. Есть центральная симметрия и у любой прямой, причем в качестве центра симметрии фигуры можно выбрать любую точку, принадлежащую этой прямой:
Симметрия – это не просто умозрительная геометрическая конструкция, она встречается и в реальной жизни. Например, листья многих деревьев обладают осевой симметрией, а зубчатое колесо – центральной симметрией. Интересно, что из 32 выделяемых в царстве животных типов у представителей 28 (это более 99% известных видов) можно выделить правую и левую половину, которые симметричны друг другу. Архитекторы и конструктора при проектировании зданий и машин стремятся придать им симметричную форму, так как в большинстве случаев именно такая форма оказывается оптимальной и экономичной.