Какими двумя соединениями ингибируется и чем активируется фосфофруктокиназа
Какими двумя соединениями ингибируется и чем активируется фосфофруктокиназа
13.1. Механизмы энергообеспечения клеток различной морфофункциональной организации в условиях нормы и гипоксических состояний
Гипоксия – типовой патологический процесс, осложняющий течение различных заболеваний.
Как известно, гипоксия определяет тяжесть течения ишемического поражения сердца, головного мозга, формирование полиорганной недостаточности при ДВС – синдроме, шоковых и коллаптоидных состояний, является неизменным спутником заболеваний инфекционной и неинфекционной природы, а также стрессовых ситуаций.
Тяжесть течения многих заболеваний и их исход в конечном итоге определяется особенностями вторичных неспецифических метаболических расстройств, степенью дестабилизации клеточных мембран, а также возможностями реактивации структурных и ферментных белков в условиях гипоксии.
Вышеизложенное указывает на необходимость дальнейшей детализации механизмов развития гипоксии на молекулярно-клеточном, органном, системном уровнях, а также патогенетического обоснования новых принципов медикаментозной коррекции метаболических и функциональных сдвигов при указанном типовом патологическом процессе.
Как указывалось выше, в соответствии с общепринятыми классическими описаниями происхождения и классификации гипоксических состояний различают гипоксии экзогенного и эндогенного происхождния. Последняя включает дыхательную, циркуляторную, гемическую и тканевую гипоксии системного или локального характера.
Общепринятым является представление о том, что в основе развития гипоксий различного генеза лежат нарушения окислительно-восстановительных реакций в связи с дефицитом кислорода. В то же время высказывается точка зрения о возможности развития субстратного типа гипоксии, обусловленной недостаточностью субстратов окисления, например, глюкозы для нервных клеток, жирных кислот для миокарда.
Как известно, динамика формирования структурных и функциональных сдвигов в различных органах и тканях при гипоксии определяются в значительной мере темпами ее развития, локализацией патологии, характером этиологических факторов, инициирующих гипоксию, и особенностями компенсаторно-приспособительных реакций в том или ином органе.
В соответствии с данными литературы устойчивость тканей различных органов и систем к гипоксии широко варьируют. Наиболее чувствительной к гипоксии является нервная система: при полном прекращении кровотока признаки повреждения коры головного мозга обнаруживается через несколько секунд. Снижение потребления кислорода на 20% структурами головного мозга вызывает потерю сознания. Через 5-6 мин аноксии головного мозга возникают глубокие структурные изменения нейронов, а в продолговатом мозге – через 10-15 мин.
В сердечной мышце мелкие очаги некроза появляются через 3-5 мин с момента, развития ишемии, а крупноочаговый инфаркт миокарда формируется уже спустя 20-30 мин.
Недостаток кислорода в тканях приводит, прежде всего, к дефициту макроэргических соединений, образуемых в сопряженных с окислительно-восстановительными процессами реакциях фосфорилирования на внутренней мембране митохондрий.
Основным энергетическим субстратом для нервной системы, а также для клеток других органов и тканей, является глюкоза. Между тем, при нормальной оксигенации миокарда основным источником его энергетического обеспечения являются высшие жирные кислоты. Так, при окислении 1 молекулы пальмитиновой кислоты образуется 130 М АТФ. В условиях ишемии миокарда усиливается конкурентное ингибирование использования жирных кислот лактатом, что приводит к значительному снижению энергообеспечения миокарда. Так, в процессе анаэробных гликолитических реакций энергетический выход на 1 молекулу глюкозы составляет 2 М АТФ.
Вышеизложенное свидетельствует о том, что независимо от характера этиологических факторов и механизмов развития гипоксии, наиболее ранними проявлениями нарушения оксигенации тканей являются сдвиги их энергетического обеспечения и связанные с ними нарушения углеводного, жирового и белкового метаболизма.
Как известно, процессы ресинтеза АТФ а митохондриях тесно связаны не только с окислительно-восстановительными реакциями, но и с реакциями гликолиза, липолиза, протеолиза, являющимися поставщиками Ац-СоА для цикла Кребса. Установлено, что регулирующими ферментами гликолиза являются фосфорилаза, гексокиназа, фосфофруктокиназа, пируваткиназа, поэтому их подавление в условиях гипоксии приводит к уменьшению образования свободной энергии и в ряде случаев носит необратимый характер. В то же время роль главного регуляторного фермента в последовательных реакциях гликолиза играет фосфофруктокиназа, которую ингибируют АТФ и цитрат, а стимулируют АМФ и АДФ.
Таким образом, в условиях гипоксии, в случаях увеличения потенциала фосфорилирования, возникает активация ключевого фермента гликолиза – фосфофруктокиназы (ФФК) и соответственно возрастание пропускной способности реакции анаэробного гликолиза. При этом резко снижается запас гликогена в сердце, мозге, печени, почках, мышцах и других тканях и соответственно накапливаются продукты гликолитических реакций – молочная и пировиноградная кислоты.
Так активация ФФК на начальных этапах ишемического или гипоксического повреждения клеток приводит к усилению мобилизации гликогена, несколько улучшает энергообеспечение тканей. При этом истощаются запасы гликогена, усиливается ацидоз, приводящий на пике своего развития к подавлению ФФК, и соответственно полной блокаде энергообеспечения клетки.
Развитие метаболического ацидоза при гипоксических состояниях усугубляется также недостаточностью реакций окисления жирных кислот, аминокислот, чрезмерным накоплением кислых продуктов метаболизма указанных соединений.
На обеих стадиях окисления жирных кислот атомы водорода или соответствующие им электроны передаются по митохондриальной цепи переноса электронов на кислород. С этим потоком электронов сопряжен процесс окислительного фосфорилирования АДФ до АТФ. Следовательно, в условиях гипоксии различного генеза блокируются процессы окисления жирных кислот в тканях, в избытке накапливаются кислые продукты, формируется метаболический ацидоз, и соответственно развиваются дефицит АТФ, подавление всех энергозависимых реакции.
Касаясь функциональной значимости метаболического ацидоза, закономерно развивающегося при гипоксии различного генеза, следует отметить ряд последующих неспецифических метаболических и функциональных расстройств, представляющих собой динамическую трансформацию реакций адаптации в реакции дезадаптации.
Как известно, типовой реакцией тучных клеток и тромбоцитов на развитие гипоксии и ацидоза является их дегрануляция с избыточным освобождением в окружающую среду высокоактивных соединений – гистамина, серотонина, ФАТ, ФХЭ, ФХН, лейкотриенов, интерлейкинов. В свою очередь, избыточное накопление ионов водорода, биологически активных соединений приводит к резкому увеличению проницаемости биологических мембран за счет структурных переходов в белках и липидах, и активации процессов свободно-радикального окисления.
Таким образом, среди механизмов, приводящих к повреждению биологических мембран при гипоксии различного генеза, необходимо выделить следующие:
1) развитие метаболического ацидоза,
2) выброс вазоактивных соединений тучными клетками,
3) активацию процессов липопероксидации,
4) высвобождение лизосомальных гидролаз при дезорганизации лизосомальных мембран с последующим усугублением метаболических сдвигов.
13.2. Механизмы развития гипоксического некробиоза.
В настоящее время очевидно, что развитие гипоксического некробиоза связано в значительной мере с дезорганизацией цитоплазматических, лизосомальных, митохондриальных, и других биологических внутриклеточных мембран, формирующих отдельные функциональные и структурные компартменты.
Причем наиболее ранние расстройства возникают у градиентсоздающих и сократительных систем клеток.
Важнейшим фактором повреждения клеток при гипоксии являются ионы кальция.
Как известно, внутриклеточная концентрация кальция в состоянии покоя поддерживается в среднем на уровне 10-7М, что в 100.000 раз меньше, чем в межклеточной жидкости. В период возбуждения кальций проникает из внеклеточной среды в клетку через потенциалзависимые кальциевые каналы. При этом возникают активация фосфолипазы С и образование липидных внутриклеточных посредников – диацилглицерина и инозинфосфамина. Цитоплазматический кальций взаимодействует с кальмодулином – внутриклеточным рецептором с последующей активацией кальмодулинзависимых протеинкиназ и включением тех или иных внутриклеточных реакций.
В условиях гипоксии, дефицита энергетического обеспечения клеток возникают недостаточность механизмов инактивации цитоплазматического кальция и удаления его из клеток в связи с подавлением активности АТФ-зависимого Са-насоса, натрий- кальциевого обменного механизма, дестабилизацией митохондриальных мембран и мембран эндоплазматического ретикулума, играющих в условиях нормы важную роль в поддержании баланса внутриклеточного кальция. При избытке внутриклеточного кальция усугубляются процессы набухания митохондрий, усиливаются дефицит АТФ и подавление всех энергозависимых реакций в клетке. Избыток кальция активизирует ядерные эндонуклеазы, фрагментирующие ДНК, индуцирует апоптоз. При высоком уровне внутриклеточного кальция активизируются нейтральные протеазы – кальципаины, разрушающие цитоскелет клетки, в частности, белки фоурин и В-актин, лизирующие рецепторы и протеинкиназу С.
При гипоксическом некробиозе вокруг гибнущих клеток формируется кальцийзависимая активация системы комплемента, активация коагуляционного и тромбоцитарного звеньев гемостаза, а также фибринолиза и калликреин-кининовой системы.
Активация под влиянием кальция мембранных фосфолипаз приводит к дальнейшей дезинтеграции мембран клеток, активации циклооксигеназы и липооксигеназы с последующим образованием простагландинов, лейкотриенов, свободных радикалов с выраженным цитотоксическим действием.
Чрезвычайно важна роль дезинтеграции митохондриальных мембран в механизмах гипоксического некробиоза клеток.
Как известно, в клетках эукариот все специфические дегидрогеназы принимают участие в окислении пирувата и других субстратов, локализованных в митохондриальном матриксе. Во внутренней мембране митохондрий локализуются переносчики электронов, составляющие дыхательную цепь и ферменты, катализирующие синтез АТФ из АДФ и фосфата.
В связи с этим очевидно, что продукты гликолиза, липолиза, протеолиза, вовлекаемые через ацетил-СоА в цикл Кребса, а также АДФ должны пройти через обе мнтохондриальные мембраны, в то время как новообразованные АТФ проникают из внутренней мембраны митохондрий в цитоплазму клетки и далее к местам энергетических трат. Установлено, что наружная мембрана легко проницаема для всех молекул и ионов небольшого размера, в то время как во внутренней мембране имеются специальные ферментативные транспортные системы, обеспечивающие трансмембранный перенос ионов и различных соединений.
Таким образом, при избыточном накоплении ионов кальция в клетке, активации процессов липопероксидации при гипоксии различного генеза резко повышается проницаемость митохондриальных мембран, возникает набухание митохондрий, пространственная дезориентация ферментативных систем транспорта электронов, синтеза АТФ. В результате происходят разобщение окислительного фосфорилирования и дыхания и соответственно подавление всех энергозависимых систем клетки: синтеза белка, трансмембранного переноса ионов, сопряжения процессов возбуждения и сокращения в мышечных структурах и т.д.
В процессе набухания митохондрии энергия потока электронов трансформируется в тепловую энергию.
Наряду с локальными и системными метаболическими сдвигами в тканях, обусловленными гипоксией, ацидозом, активизацией процессов липопероксидации, возникает комплекс метаболических и функциональных сдвигов, обусловленных выбросом гормонов адаптации – катехоламинов, глюкокортикоидов.
Как известно, при чрезмерной активации симпатоадреналовой системы (САС) реакции адаптации довольно быстро трансформируется в дезадаптационные процессы. Во-первых, при активации освобождения норадреналина происходит спазм сосудов переферических органов и тканей и соответственно усугубление циркуляторной гипоксии. На фоне активации САС при участии постсинаптических β-адренорецпторов возможна активация процессов гликолиза, гликогенолиза, липолиза, что, безусловно, усугубляет развитие ацидотических сдвигов, свойственных гипоксии.
Усиление адренергетических влияний закономерно сопровождается активацией процессов липопероксидации, что вносит весомый вклад в механизмы развития гипоксического некробиоза клеток органов и тканей, чувствительных к ишемии.
Синхронно с освобождением катехоламинов в условиях гипоксического стресса выбрасываются глюкокортикоиды, индуцирующие процессы лизиса и апоптоза в лимфоидной ткани, блокирующие процессы пролиферации и репаративной регенерации в ряде внутренних органов.
Регуляция гликолиза и цикл Кребса
Содержание
Регуляция гликолиза [ править | править код ]
В разных тканях гликолиз выполняет разные функции. В белых мышцах, сетчатке и эритроцитах в процессе гликолиза осуществляется анаэробный синтез АТФ, а в качестве побочного продукта образуется молочная кислота. При аэробном гликолизе в мышцах образуется пируват, который окисляется в цикле Кребса. Продукты цикла Кребса поступают в дыхательную цепь, и уже в ней синтезируется АТФ. В печени и жировой ткани в ходе аэробного гликолиза и пентозофосфатного пути образуется пируват, используемый для синтеза жирных кислот. Помните, что регуляция метаболических путей всегда имеет свою логику, именно функция процесса определяет способы его регуляции.
На стадии поступления глюкозы в клетку процесс гликолиза регулируется транспортерами глюкозы (ГЛЮТ), глюкокиназой или гексокиназой, фосфофруктокиназой-1, пируваткиназой и пируватдегидрогеназой.
Транспортеры глюкозы ГЛЮТ [ править | править код ]
Глюкоза поступает в клетку с помощью транспортеров глюкозы (ГЛЮТ). Существует несколько типов транспортеров глюкозы — ГЛЮТ1, ГЛЮТ2 и т.д. Все они расположены в плазматической мембране, кроме ГЛЮТ4, который регулирует поступление глюкозы в клетку и тем самым регулирует гликолиз в мышцах и жировой ткани. При голодании молекулы ГЛЮТ4 располагаются во внутриклеточных везикулах. После приема пищи под действием сигнала инсулина происходит перемещение ГЛЮТ4 в плазматическую мембрану, и клетка начинает интенсивно поглощать глюкозу.
Глюкокиназа и гексокиназа [ править | править код ]
Эти ферменты катализируют первую реакцию гликолиза — фосфорилирование глюкозы до глюкозо-6-фосфата. Гексокиназа содержится во многих тканях; у этого фермента низкое значение Km (т.е. высокое сродство к глюкозе). Гексокиназа по принципу обратной связи ингибируется продуктом реакции — глюкозо-6-фосфатом. Глюкокиназа содержится в печени и р-клетках поджелудочной железы. У глюкокиназы, напротив, высокое значение Km (т.е. низкое сродство к глюкозе). В печени она активна при высоких концентрациях глюкозы (до 15 ммоль/л), которая после приема углеводсодержащей пищи поступает из кишечника в печень по воротной вене печени. <Важно: глюкокиназа находится в печени.)
Фосфофруктокиназа-1 [ править | править код ]
Активация фосфофруктокиназы-1. Этот фермент активируется фруктозо-2,6-бисфосфатом (Ф-2,6-бисФ). Кроме того, АМФ также активирует фосфофруктокиназу-1. Высокие концентрации АМФ говорят о том, что клетка испытывает недостаток в энергии и требуется усилить синтез АТФ. Поэтому АМФ способствует интенсификации гликолиза.
(В печени образование фруктозо-2,6-бисфосфата активируется под действием инсулина и ингибируется под действием глюкагона. В скелетных мышцах образование этого вещества стимулируется высокой, а ингибируется низкой концентрацией фруктозо-6-фосфата.)
Ингибирование фосфофруктокиназы-1. Высокая концентрация АТФ ингибирует фосфофруктокиназу-1, и интенсивность гликолиза снижается. Кроме того, этот фермент ингибируется цитратом.
Пируваткиназа [ править | править код ]
Ингибирование пируваткиназы. В печени пируваткиназу ингибируют аланин и циклический АМФ. Эти вещества образуются при голодании. При голодании секретируется глюкагон, который стимулирует синтез циклического АМФ. Аланин же образуется при распаде мышечных белков при голодании и используется для синтеза глюкозы в процессе глюконеогенеза. При ингибировании пируваткиназы блокируется использование фосфоенолпирувата в гликолизе, и в клетке интенсифицируется глюконеогенез.
Активация пируваткиназы. В печени пируваткиназа активируется фруктозо-1,6-бисфосфатом (активация по принципу прямой связи). Этот процесс особенно важен при переходе от периода голодания к липогенезу. При голодании пируваткиназа неактивна, и в клетке интенсивно идет глюконеогенез, а при липогенезе пируваткиназа активируется.
Пируватдегидрогеназа [ править | править код ]
Пируватдегидрогеназа — комплекс из трех ферментов, который расположен в митохондриях. Он контролирует скорость поступления пирувата в цикл Кребса.
Активация пируватдегидрогеназы. После приема богатой углеводами пищи под действием инсулина происходит активация пируватдегидрогеназы в печени и жировой ткани, где пируват требуется для синтеза жирных кислот. Фермент также активируется своим субстратом (пируватом) и коферментами КоА и НАД+. Наконец, повышение концентрации АДФ также активирует пируватдегидрогеназу. Уровень АДФ повышается, когда клетка испытывает недостаток в энергии. Повышение концентрации АДФ свидетельствует о необходимости активации цикла Кребса и дыхательной цепи для синтеза АТФ.
Ингибирование пируватдегидрогеназы. Высокие концентрации АТФ ингибируют пируватдегидрогеназу, и окисление пирувата в цикле Кребса приостанавливается. Кроме того, активность фермента ингибируют продукты пируватдегидрогеназной реакции — ацетил-КоА и НАДН. Такая ситуация создается при голодании, когда в качестве источника энергии используются жирные кислоты, из которых образуется ацетил-КоА. В этом случае ингибирование пируватдегидрогеназы способствует сохранению пирувата для синтеза глюкозы. [Примечание: во время голодания пируват образуется из резервных запасов, т.е. из глюкозы, образующейся из гликогена и аминокислот, образующихся при распаде белков мышц.]
Регуляция цикла Кребса [ править | править код ]
В разных тканях цикл Кребса выполняет разные функции. Так, в мышцах и головном мозге в цикле Кребса ацетил-КоА окисляется с образованием НАДН и ФАДН2, которые используются для синтеза АТФ в дыхательной цепи. В печени при голодании ацетил-КоА не окисляется в цикле Кребса. Вместо этого цикл Кребса используется для синтеза малата из некоторых аминокислот, который превращается в оксалоацетат и вступает в глюконеогенез. После приема пищи ацетил-КоА в печени и жировой ткани поступает в цикл Кребса на очень короткий период. В первой реакции цикла он преобразуется в цитрат, затем экспортируется в цитозоль и используется для биосинтеза жирных кислот.
Изоцитратдегидрогеназа [ править | править код ]
Изоцитратдегидрогеназа ингибируется при высокой концентрации НАДН. Кофермент изоцитратдегидрогеназы — НАД+. Когда НАД+ восстанавливается до НАДН, изоцитратдегидрогеназа инактивируется, поскольку ее кофермент отсутствует.
Нарушения активности пируватдегидрогеназы [ править | править код ]
Недостаточность тиамина [ править | править код ]
В нервной ткани ведущую роль в синтезе АТФ играют гликолиз и дальнейший синтез ацетил-КоА в пируватдегидрогеназной реакции, который затем окисляется в цикле Кребса. Для нормального функционирования пируватдегидрогеназы необходим тиамин. При недостаточности тиамина активность фермента снижается, и нервная ткань испытывает недостаток в производимой энергии. Развиваются гиперлактатемия, заболевания нервной системы; в тяжелых случаях — болезнь Вернике, психоз Корсакова. Недостаточность тиамина наблюдается при хроническом алкоголизме, из-за плохого питания.
(Запомните, что, хотя ацетил-КоА может образовываться из жирных кислот независимо от пируватдегидрогеназной реакции, головной мозг не может использовать жирные кислоты в качестве источника энергии, поскольку они не проходят через гематоэнцефалический барьер.)
Болезнь Ли [ править | править код ]
Некоторые формы болезни Ли вызываются дисфункцией пируватдегидрогеназы.
СОДЕРЖАНИЕ
Состав
PFK1 представляет собой аллостерический фермент и имеет структуру, аналогичную структуре гемоглобина, поскольку он является димером димера. Одна половина каждого димера содержит сайт связывания АТФ, тогда как другая половина сайта связывания субстрата (фруктозо-6-фосфат или (F6P)), а также отдельный аллостерический сайт связывания.
На противоположной стороне каждой субъединицы от каждого активного сайта находится аллостерический сайт на границе раздела между субъединицами в димере. За этот сайт конкурируют ATP и AMP. N-концевой домен играет каталитическую роль в связывании АТФ, а C-конец играет регуляторную роль.
Механизм
PFK1 представляет собой аллостерический фермент, активность которого может быть описана с использованием симметричной модели аллостеризма, посредством которой происходит согласованный переход от ферментативно неактивного Т-состояния к активному R-состоянию. F6P связывается с высоким сродством с ферментом в состоянии R, но не с ферментом в состоянии T. Для каждой молекулы F6P, которая связывается с PFK1, фермент постепенно переходит из состояния T в состояние R. Таким образом, график, отображающий активность PFK1 в отношении увеличения концентраций F6P, будет принимать форму сигмоидальной кривой, традиционно связанную с аллостерическими ферментами.
Аллостерические активаторы, такие как АМФ и АДФ, связываются с аллостерическим сайтом, чтобы облегчить образование R-состояния, вызывая структурные изменения в ферменте. Точно так же ингибиторы, такие как АТФ и PEP, связываются с одним и тем же аллостерическим сайтом и способствуют формированию Т-состояния, тем самым ингибируя активность фермента.
Гидроксильный кислород углерода 1 оказывает нуклеофильную атаку на бета-фосфат АТФ. Эти электроны подталкиваются к ангидриду кислорода между бета- и гамма-фосфатами АТФ.
Регулирование
PFK1 аллостерически ингибируется высокими уровнями АТФ, но АМФ отменяет ингибирующее действие АТФ. Следовательно, активность фермента увеличивается при понижении клеточного соотношения АТФ / АМФ. Таким образом, при падении энергетического заряда стимулируется гликолиз. PFK1 имеет два сайта с разным сродством к АТФ, который является как субстратом, так и ингибитором.
PFK1 также ингибируется низкими уровнями pH, которые усиливают ингибирующий эффект АТФ. PH падает, когда мышцы функционируют анаэробно и вырабатывают чрезмерное количество молочной кислоты (хотя молочная кислота сама по себе не является причиной снижения pH). Этот тормозящий эффект служит для защиты мышц от повреждений, которые могут возникнуть в результате накопления слишком большого количества кислоты.
Серотонин (5-HT) увеличивает PFK за счет связывания с рецептором 5-HT (2A), вызывая фосфорилирование тирозинового остатка PFK с помощью фосфолипазы C. Это, в свою очередь, перераспределяет PFK в клетках скелетных мышц. Поскольку PFK регулирует гликолитический поток, серотонин играет регулирующую роль в гликолизе.
У человека есть три гена фосфофруктокиназы:
Клиническое значение
Мутация фосфофруктокиназы и рак: чтобы раковые клетки удовлетворяли свои потребности в энергии из-за быстрого роста и деления клеток, они выживают более эффективно, когда у них есть гиперактивный фермент фосфофруктокиназа 1. Когда раковые клетки быстро растут и делятся, они изначально не имеют достаточного кровоснабжения и, таким образом, могут иметь гипоксию (кислородное голодание), и это запускает O-GlcNAcylation по серину 529 PFK. Эта модификация подавляет активность PFK1 и поддерживает пролиферацию рака, в отличие от мнения, что высокая активность PFK1 необходима для рака. Это может быть связано с перенаправлением потока глюкозы в пентозофосфатный путь для выработки НАДФН для детоксикации активных форм кислорода.
Простой герпес типа 1 и фосфофруктокиназа: некоторые вирусы, включая ВИЧ, HCMV и Mayaro, влияют на клеточные метаболические пути, такие как гликолиз, путем зависимого от MOI увеличения активности PFK. Механизм, по которому герпес увеличивает активность PFK, заключается в фосфорилировании фермента по остаткам серина. Гликолиз, вызванный HSV-1, увеличивает содержание АТФ, что имеет решающее значение для репликации вируса.