Какой процесс подтверждает что растворение физико химический процесс
Процесс растворения – физико-химический процесс
Растворы.
Растворами называются гомогенные (однородные) системы, содержащие не менее двух веществ.
Растворы могут быть жидкими, твёрдыми и газообразными.
По растворимости все вещества делятся на хорошо растворимые, малорастворимые,практически нерастворимые.
Хорошо растворимые вещества:
— Твёрдые: сахар, большинство солей, сода, медный купорос, щавелевая кислота, лимонная кислота, щелочи NaOH, KОH.
— Газы: аммиак, хлороводород, бромоводород, йодоводород и т. д.
Малорастворимые вещества:
— Твёрдые: гипс, гидроксид кальция.
— Жидкости: диэтиловый эфир, анилин.
Практически нерастворимые вещества:
— Твёрдые: стекло, серебро, золото, медь, AgCl, BaSO4, CaCO3.
— Жидкости: жиры, растительное масло, нефть, нефтепродукты.
· Газы: благородные газы.
Абсолютно нерастворимых веществ не существует.
С увеличением температуры растворимость большинства твёрдых веществ увеличивается, а растворимость газообразных веществ уменьшается (кипение воды – выделяется кислород). Растворимость газообразных веществ увеличивается с повышением давления (получение газированной воды).
Процесс растворения – физико-химический процесс.
Физический процесс растворения заключается в разрушении межмолекулярных и меж ионных химических связей, кристаллической решётки, что сопровождается поглощением энергии – эндотермический процесс, а так же идёт распределение частиц растворённого вещества между молекулами растворителя (диффузия).
Химический процесс растворения заключается во взаимодействии частиц растворённого вещества с молекулами растворителя, что сопровождается выделением энергии – экзотермический процесс.
Таким образом, в целом процесс растворения веществ сопровождается выделением или поглощением энергии. Если на разрушение химических связей затрачивается больше энергии, чем её выделяется при взаимодействии частиц растворённого вещества с молекулами растворителя, то в процессе растворения энергия поглощается и наоборот. Например, с поглощением энергии идёт процесс растворения нитратов калия и аммония, хлорида натрия. С выделением энергии растворяется серная кислота, безводный сульфат меди (II), гидроксиды натрия, калия и др. вещества.
В зависимости от величины частиц растворённого вещества различают взвеси, истинные растворы и коллоидные растворы.
Суспензии – это дисперсные системы, где дисперсной фазой является твёрдое вещество, а дисперсионной средой – жидкость, причём твёрдое вещество нерастворимо в жидкости.
Например, глина, песок, мел в воде. Со временем частички, образующие взвесь, осаждаются, причём, чем они меньше, тем дольше сохраняется суспензия.
Эмульсии – это дисперсные системы, в которых дисперсная фаза и дисперсионная среда являются взаимно не смешивающимися жидкостями (нефть и нефтепродукты в воде, масло в воде). Со временем эмульсия расслаивается.
Частицы растворённого вещества из суспензий и эмульсий можно отделить отстаиванием и фильтрованием.
Коллоидные растворы занимают промежуточное положение между истинными растворами и взвесями. Это тонкодисперсные однородные системы. Такие частицы способны рассеивать свет, и их можно увидеть в ультрамикроскоп.
Коллоидные растворы делят на золи (коллоидные растворы) и гели (студни).
Коллоидные растворы сохраняются достаточно долго, но со временем осаждаются, а при нагревании или добавлении кислот, щелочей, солей, коагулируют (свёртываются).
Истинные растворы однородны (гомогенны), сохраняются сколь угодно долго, не фильтруются и не отстаиваются. Их нельзя увидеть даже в современные ультрамикроскопы, так как растворённое вещество раздроблено до молекул или ионов, а они не рассеивают свет. Это растворы кислот, щелочей, солей, сахар, спирт в воде.
По соотношению преобладания числа частиц, переходящих в раствор и удаляющихся из раствора, различают растворы насыщенные, ненасыщенные и пересыщенные.
Раствор, в котором данное вещество при данной температуре больше не растворяется, (т. е., раствор, находящийся в равновесии с растворяемым веществом), называется насыщенным (всякая жидкость над осадком есть насыщенный раствор).
Раствор, в котором при данной температуре можно ещё растворить добавочное количество данного вещества, называется ненасыщенны. (раствор, который содержит меньшее количество растворённого вещества, чем в насыщенном растворе при тех же условиях).
Раствор, содержащий больше растворённого вещества, чем его должно быть в данных условиях в насыщенном растворе, называется пересыщенным. Такие растворы представляют собой неустойчивые, неравновесные системы, в которых наблюдается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворённого вещества (кристаллизация), и раствор становится насыщенным.
Насыщенные и ненасыщенные растворы нельзя путать с разбавленными и концентрированными растворами.
По относительным количествам растворённого вещества и растворителя растворы делятся на разбавленные и концентрированные.
Разбавленные растворы – это растворы с небольшим содержанием растворённого вещества.
Концентрированные растворы – это растворы с большим содержанием растворённого вещества.
Понятие разбавленный и концентрированный раствор является относительным. Иногда говорят «крепкий» раствор или «слабый» раствор. (Сказать точно, какой раствор серной кислоты является разбавленным, а какой концентрированным, нельзя.
Химия. 11 класс
§ 23. Растворение как физико-химический процесс
Вы уже знакомы со смесями веществ — растворами и механическими смесями, их классификацией ( рис. 50 ). Напомним, что механические смеси образуются в результате простого перемешивания веществ без образования ими химической связи или других химических изменений. Каждый компонент такой механической (гетерогенной) смеси сохраняет свой состав и свойства.
Также вам уже известны растворы — гомогенные устойчивые системы переменного состава, состоящие из нескольких компонентов. Различают жидкие (водные и неводные), газообразные и твёрдые растворы. Некоторые их примеры приведены на рисунке 50. Мы будем рассматривать преимущественно водные растворы.
В отличие от механических смесей растворы однородны, то есть отсутствуют границы раздела фаз. Кроме того, растворы устойчивы, так как при неизменных условиях (концентрация растворённого вещества, температура, давление) они бесконечно долго остаются гомогенными системами.
Физико-химический процесс, при котором происходит взаимодействие частиц растворяемого вещества и растворителя с образованием гомогенной устойчивой системы переменного состава, называют растворением.
Химическая сторона процесса растворения заключается в разрушении связей между частицами растворяемого вещества и их взаимодействии с молекулами растворителя. При растворении протекают физические процессы взаимной диффузии частиц растворяемого вещества и молекул воды.
Химическая реакция растворения
Растворение — что это за процесс
Растворы — однородные (гомогенные) системы, в состав которых входят: растворенные вещества, растворитель и (возможно) продукты химической реакции, протекающей между ними.
Особенностью растворенного вещества является равномерное распределение в объеме вещества, которое играет роль растворителя. Для раствора характерно содержание двух и более компонентов.
Растворитель представляет собой вещество, сохраняющее стабильность агрегатного состояния в процессе растворения.
Когда смешивают вещества с идентичными агрегатными состояниями, к примеру, жидкость с жидкостью, газ с газом, твердый материал с твердым, роль растворителя играет компонент с большим содержанием. Процесс, при котором образуется раствор, определяется особенностью взаимодействия частиц растворителя с частицами растворенного вещества и их природой.
Растворение является физико-химическим процессом, в котором можно наблюдать взаимодействие частиц между собой, что приводит к образованию раствора.
Растворение представляет собой результат взаимодействия молекул вещества, играющего роль растворителя, с частицами растворенного вещества. При растворении твердых веществ наблюдают увеличение энтропии. В процессе растворения газообразных веществ энтропия уменьшается. Растворение сопровождается исчезновением межфазной границы, изменением физических свойств раствора, в том числе плотности, вязкости, в некоторых случаях, окраски.
Когда растворитель и растворенное вещество участвуют в химическом взаимодействии, можно наблюдать изменение химических свойств раствора. В качестве примера можно привести растворение газа хлороводорода в воде, результатом которого является образование жидкой соляной кислоты.
Теплота растворения зависит от природы компонентов раствора.
Например: если растворяются кристаллические вещества с растворимостью, увеличивающейся при повышении температуры, то раствор охлаждается. Это объясняется тем, что раствор обладает большей внутренней энергией по сравнению с аналогичными характеристиками кристаллического вещества и растворителя, взятых по отдельности. Как пример, можно рассмотреть кипяток, в котором происходит растворение сахара. В результате раствор значительно охлаждается.
Основные этапы: физическая и химическая стадия
Этапы растворения кристаллических веществ в водной среде:
Классификация растворов в зависимости от механизма растворения:
Физическим растворением называют процесс разрыва и образования лишь межмолекулярных связей, в том числе, водородных.
Физическое растворение можно наблюдать только в случае определенных веществ, выполняющих роль растворителя и растворенного вещества, не вступающих в химические реакции между собой. К примеру, нафталин растворяется в спирте.
Химическое растворение является видом растворения, которое предполагает разрушение исходных химических связей в процессе химического превращения.
Например: химическое растворение протекает при электрической диссоциации растворяемого вещества.
При растворении имеет место следующая закономерность: подобное хорошо растворяется в подобном. Так, в неполярных растворителях хорошо растворяются неполярные вещества. Полярными растворителями целесообразно растворять полярные вещества. Благодаря исследованиям механизмов растворения, природы растворяемых веществ и растворителей, определяют степень растворимости одного вещества в другом.
Признаки химического взаимодействия при растворении
Физические признаки растворения выражаются в виде диффузии. Процесс заключается в распределении частиц растворенного вещества между молекулами вещества, которое является растворителем. В результате «качества» растворенного вещества проявляются в растворе.
Признаками химических явлений являются:
Когда концентрированная серная кислота растворяется в водной среде, температура раствора значительно повышается. Данное явление нашло практическое применение в «химических грелках».
Процесс растворения нитрата аммония в воде сопровождается сильным поглощением теплоты, что объясняет охлаждение раствора. На данном эффекте основан принцип действия гипотермического пакета, который входит в состав автомобильной аптечки для оказания первой медицинской помощи.
Безводный сульфат меди (II) обладает белой окраской. Когда вещество растворяют в воде, раствор окрашивается в голубой цвет.
В современной науке имеет место теория, объединяющая две точки зрения. Ее называют физико-химической теорией растворов. Предпосылки к данной теории были сформулированы еще в 1906 году Д.И. Менделеевым в учебнике «Основы химии».
Факторы растворимости веществ
Растворимость представляет собой свойство вещества растворяться в каком-либо растворителе.
Мера растворимости при заданных условиях определена содержанием данного вещества в насыщенном растворе. Существует условная классификация веществ в зависимости от их способности растворяться:
Когда вещество контактирует с водной средой, можно получить следующий результат:
Коэффициент растворимости определяется, как отношение массы растворенного вещества к массе растворителя (к примеру, 10 г соли на 100 г воды).
В зависимости от того, какой концентрацией обладает растворенное вещество, растворы условно разделяют на:
Ненасыщенные растворы — это те, в которых концентрация растворенного вещества меньше по сравнению с концентрацией в соответствующем насыщенном растворе. Особенность ненасыщенного раствора заключается в возможности при заданных условиях растворить в нем еще определенное количество растворенного вещества.
Насыщенные растворы представляют собой растворы с максимальной концентрацией растворенного вещества при заданных условиях.
В некоторых случаях нет необходимости создавать специальные условия для приготовления насыщенного раствора. Эксперимент можно поставить в домашних условиях.
При смешивании поваренной соли с водой образуется раствор. Когда смесь становится насыщенной, поваренная соль перестает растворяться в воде, так как достигнута ее максимальная концентрация.
Перенасыщенным раствором называют такой раствор, в котором растворенное вещество находится в концентрации, превышающей его концентрацию в насыщенном растворе.
Излишки растворенного вещества достаточно просто выпадают в виде осадка. Для получения перенасыщенного раствора можно, к примеру, охладить насыщенный раствор, компонентами которого являются поваренная соль и вода. В том случае, когда температура снижается, уменьшается растворимость поваренной соли. В результате получают перенасыщенный раствор.
В зависимости от концентрации растворенного вещества растворы бывают:
Концентрированные растворы являются растворами, для которых характерно относительно высокое содержание растворенного вещества.
Разбавленные растворы представляют собой растворы, в которых растворенное вещество характеризуется относительно низким содержанием.
Подобная классификация является условной и не зависит от деления раствора по насыщенности. Разбавленный раствор может являться насыщенным. Концентрированный раствор не во всех случаях можно отнести к насыщенным растворам.
где m р.в. определяет массу растворенного вещества, г;
m р-ля является массой растворителя, г.
Растворимость некоторых веществ в воде при температуре 20 °C:
Растворимость веществ зависит от нескольких факторов:
Абсолютно нерастворимых веществ не существует. Все вещества лишь условно классифицируют на растворимые, малорастворимые и нерастворимые. Даже такие материалы, как серебро и золото, частично растворяются в воде. С другой стороны, растворимость этих металлов столь мала, что ей допустимо пренебречь.
Растворимость, которой характеризуются твердые вещества, определяется структурой этих веществ, то есть типом кристаллической решетки. К примеру, вещества с металлическими кристаллическими решетками, в том числе железо и медь, отличаются малой растворимостью в воде. Вещества, для которых характерна ионная кристаллическая решетка, обычно хорошо растворяются в воде.
Подобное хорошо растворяется в подобном.
Согласно озвученному правилу, вещества, обладающие связями ионного или ковалентного полярного типа, хорошо растворяются в полярных растворителях. В качестве примера можно привести соли, которые характеризуются хорошей растворимостью в воде. С другой стороны, неполярные вещества в распространенных случаях способны хорошо растворяться в неполярных растворителях.
В большинстве своем соли щелочных металлов и аммония хорошо растворяются в водной среде. Высокой степенью растворимости характеризуются практически все нитраты, нитриты, многие галогениды, за исключением галогенидов серебра, ртути, свинца, таллия, и сульфаты, кроме сульфатов щелочноземельных металлов, серебра и свинца. Сульфиды, фосфаты, карбонаты, некоторые другие соли переходных металлов обладают небольшими показателями растворимости.
Растворимость газообразных веществ в жидких средах определяется их природой. К примеру, в 100 объемах воды при температуре 20 °C можно растворить 2 объема водорода, 3 объема кислорода. При аналогичных условиях в 1 доле воды можно растворить 700 объемов аммиака.
Процесс растворения газообразных веществ в воде, как результат гидратации молекул растворяемого газа, протекает с выделением теплоты. В связи с этим, когда температура повышается, растворимость газообразных веществ снижается.
Температурный режим неодинаково влияет на способность твердых веществ растворяться в воде. В распространенных случаях можно наблюдать повышение растворимости при нагреве твердых веществ.
Растворимость твердых и жидких веществ в жидких средах почти не меняется при перепадах давления. Это связано с незначительным изменением объема в процессе растворения. Когда в жидкости растворяют газы, объем системы уменьшается. В связи с этим, при повышении давления увеличивается растворимость газообразных веществ. Общий вид зависимости растворимости газов от давления описан законом У. Генри (Англия, 1803 г.).
Закон У. Генри: растворимость газа при стабильной температуре прямо пропорциональна его давлению над жидкостью.
Рассмотренная закономерность справедлива для небольших давлений в случае газообразных веществ со сравнительно небольшой растворимостью и при условии отсутствия химического взаимодействия между молекулами растворяемого газа и растворителя.
В том случае, когда вода содержит примеси других веществ, например, соли, кислоты и щелочи, газы хуже растворяются в такой среде. Газообразный хлор характеризуется растворимостью в насыщенном водном растворе поваренной соли, которая в 10 раз меньше по сравнению с аналогичным показателем в чистой воде.
Эффект, предполагающий снижение растворимости в присутствии солей, называют высаливанием. Ухудшение свойств растворимости связано с гидратацией солей, которая является причиной уменьшения количества свободных молекул воды. Молекулы воды, образовавшие связи с ионами электролита, не являются растворителем для каких-либо веществ.
Примеры растворения твердых веществ в воде
Данные о растворимости веществ необходимы для решения многих задач по химии, связанных с записью уравнений реакций. Таблица растворимости содержит информацию о зарядах веществ, которую используют для корректной записи реагентов и схем химического взаимодействия. По растворимости в воде определяют способность соли или основания диссоциировать.
Водные соединения, проводящие ток, являются сильными электролитами. Существует и другой тип веществ, которые отличаются тем, что плохо проводят ток. Такие соединения являются слабыми электролитами. Сильные электролиты представляет собой вещества, практически полностью ионизирующиеся в воде. В отличие от них, слабые электролиты проявляют это свойство лишь в малой степени.
Существует несколько видов уравнений:
Краткие ионные уравнения являются сокращенным вариантом полных ионных уравнений. В полном уравнении принято записывать все ионы из которых состоят реагенты и продукты реакции.
В виде отдельных ионов можно записывать только сильные электролиты.
Затем, сократив одинаковые ионы, присутствующие в обоих частях химического уравнения, получают уравнение в кратком виде.
В молекулярных уравнениях все, без исключения, вещества записаны в молекулярном виде.
Растворение – это процесс равномерного распределения одного вещества в другом, при котором растворяемое вещество переходит в агрегатное состояние растворителя
Раствор – это химическая система, образованная несколькими веществами, между которыми нет поверхностей раздела.
Физическая теория растворов:
Растворение – это процесс диффузии, растворы – это однородные смеси
Химическая теория растворов:
Растворение – это процесс химического взаимодействия растворяемого вещества с водой – гидратация, растворы – соединения гидраты
Электролиты – это вещества, растворы или расплавы которых проводят электрический ток.
Неэлектролиты – это вещества, растворы или расплавы которых не проводят электрический ток.
Электролитическая диссоциация – это распад электролита на свободно перемещающиеся ионы при растворении его в воде или при плавлении.
Электролиты при растворении в воде или
расплавлении распадаются(диссоциируют) на ионы – положительно (катионы) и отрицательно(анионы) заряженные частицы.
В растворах и расплавах электролиты проводят электрический ток.
ВЕЩЕСТВА | |
ЭЛЕКТРОЛИТЫ | НЕЭЛЕКТРОЛИТЫ |
Электролиты – это вещества, водные растворы или расплавы которых проводят электрический ток | Неэлектролиты – это вещества, водные растворы или расплавы которых не проводят электрический ток |
Вещества с ионной химической связью или ковалентной сильнополярной химической связью – кислоты, соли, основания | Вещества с ковалентной неполярной химической связью или ковалентной слабополярной химической связью |
В растворах и расплавах образуются ионы | В растворах и расплавах не образуются ионы |
Домашнее задание: параграф 35, упр. 1,4,5,выучить определения
Основные положения ТЭД.
1. Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные.
2. Под действием электрического тока ионы приобретают направленное движение: положительно заряженные частицы движутся к катоду, отрицательно заряженные – к аноду. Поэтому положительно заряженные частицы называются катионами, а отрицательно заряженные – анионами.
3. Направленное движение происходит в результате притяжения их противоположно заряженными электродами (катод заряжен отрицательно, а анод – положительно).
4. Ионизация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов в молекулы (ассоциация).
Основываясь на теории электролитической диссоциации, можно дать следующие определения для основных классов соединений:
Кислотами называются электролиты, при диссоциации которых в качестве катионов образуются только ионы водорода. Например,
Основность кислоты определяется числом катионов водорода, которые образуются при диссоциации. Так, HCl, HNO3 – одноосновные кислоты, H2SO4, H2CO3 – двухосновные, H3PO4, H3AsO4 – трехосновные.
Основаниями называют электролиты, при диссоциации которых в качестве анионов образуются только гидроксид-ионы. Например,
Растворимые в воде основания называются щелочами.
Кислотность основания определяется числом его гидроксильных групп. Например, KOH, NaOH – однокислотные основания, Ca(OH)2 – двухкислотное, Sn(OH)4– четырехкислотное и т.д.
Солями называют электролиты, при диссоциации которых образуются катионы металлов (а также ион NH4 + ) и анионы кислотных остатков. Например,
Электролиты, при диссоциации которых одновременно, в зависимости от условий, могут образовываться и катионы водорода, и анионы – гидроксид-ионы называются амфотерными. Например,
Домашнее задание: параграф 36,упр. 2-5, выучить определения