Кальвин что открыл в биологии
Цикл Кальвина
Восстановительный пентозофосфатный цикл, цикл Кальвина — серия биохимических реакций, осуществляемая при фотосинтезе растениями (в строме хлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации CO2.
Содержание
Стадии цикла
В цикл вовлекаются АТФ и НАДФ·Н, образованные в ЭТЦ фотосинтеза, углекислый газ и вода; основным продуктом являеся глицеральдегид-3-фосфат. Поскольку АТФ и НАДФ·Н могут образовываться в разных метаболических путях, цикл не следует рассматривать строго привязанным к световой фазе фотосинтеза.
Общий баланс реакций цикла можно представить уравнением:
Две молекулы глицеральдегид-3-фосфата используются для синтеза глюкозы.
Цикл состоит из трёх стадий: на первой под действием фермента рибулозобисфосфат-карбоксилаза/оксигеназа происходит присоединение CO2 к рибулозо-1,5-дифосфату и расщепление полученной гексозы на две молекулы 3-фосфоглицериновой кислоты (3-ФГК). На второй 3-ФГК восстанавливается до глицеральдегид-3-фосфата (фосфоглицеральдегида, ФГА), часть молекул которого выходит из цикла для синтеза глюкозы, а другая часть используется в третьей стадии для регенерации рибулозо-1,5-дифосфата.
Карбоксилирование
Карбоксилирование рибулозо-1,5-бисфосфата (5-углеродное соединение) осуществляется рубиско в несколько стадий. На первой кетонная группа рибулозы восстанавливается до спиртовой, между 2 и 3 атомами углерода устанавливается двойная связь. Полученное соединение нестабильно и именно оно карбоксилируется с образованием 2-карбокси-3-кето-D-арабитол-1,5-бисфосфата. Его структурный аналог 2-карбокси-D-арабитол-1,5-бисфосфат ингибирует весь процесс. Новое, уже 6-углеродное соединение, также нестабильно и распадается на две молекулы 3-фосфоглицериновой кислоты (3-фосфоглицерат, 3-ФГА).
Восстановление
Восстановление 3-фосфоглицериновой кислоты (3-ФГА) происходит в две реакции.
Сначала каждая 3-ФГА с помощью 3-фосфоглицераткиназы и с затратой одной АТФ фосфорилируется, образуя 1,3-бисфосфоглицериновая кислота (глицерат-1,3-бисфосфат).
Затем под действием глицеральдегид-1,3-фосфатдегидрогеназы бисфосфоглицериновая кислота восстанавливается НАД(Ф)·H (у растений и цианобактерий; у пурпурных и зелёных бактерий восстановителем является НАД·H) параллельно с отщеплением одного остатка фосфорной кислоты. Образуется глицеральдегид-3-фосфат (фосфоглицеральдегид, ФГА, триозофосфат). Обе реакции обратимы.
Регенерация
На последней стадии 5 молекул глицеральдегид-3-фосфатов превращаются в три молекулы рибулозо-1,5-бисфосфата.
Вначале под действием трифосфат-изомеразы глицеральдегид-3-фосфат изомеризуется в дигидроксиацетон-фосфат. Фруктозабисфосфат-альдолаза объединяет их в фруктозо-6-фосфат с отщеплением остатка фосфорной кислоты. Затем следует ряд реакций перестройки углеродных скелетов и образуется рибулозо-5-фосфат. Он фосфорилируется фосфорибулокиназой и рибулозо-1,5-бисфосфат регенерируется.
Открытие
С 1940-х гг. Мелвин Калвин работал над проблемой фотосинтеза; к 1957 с помощью CO2, меченного по углероду, выяснил химизм усвоения растениями CO2 ( восстановительный карбоновый цикл Калвина ) при фотосинтезе. Нобелевская премия по химии (1961).
См. также
Литература
Ссылки
Полезное
Смотреть что такое «Цикл Кальвина» в других словарях:
цикл Кальвина — наиболее распространенный путь восстановления углекислоты при фотосинтезе (исключение составляют зеленые бактерии) и хемосинтезе. Первичные продукты фотосинтеза и хемосинтеза (энергия в виде АТФ и восстановитель) используются в Ц. К. для… … Словарь микробиологии
цикл кальвина-линена — – метаболитический путь окисления высших жирных кислот (β окисление) … Краткий словарь биохимических терминов
Кальвина цикл — см. цикл Кальвина. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) … Словарь микробиологии
Восстановительный пентозофосфатный цикл — Схема цикла. Чёрные кружки атомы углерода, красные кислорода, фиолетовые фосфора, маленькие чёрные окружности атомы водорода Восстановительный пентозофосфатный цикл, цикл Кальвина … Википедия
Фотосинтез — Лист растения … Википедия
Оксигенный фотосинтез — Лист растения Фотосинтез процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии… … Википедия
Фотолитоавтотрофия — Лист растения Фотосинтез процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий). В современной физиологии… … Википедия
Метаболизм — У этого термина существуют и другие значения, см. Метаболизм (значения). Структура аденозинтрифосфата главного посредника в энергетическом обмене веществ Метаболизм (от … Википедия
Фотосинтез — Способность фототрофных бактерий к фотосинтезу, как и у растений, определяется наличием магнийсодержащих порфириновых пигментов хлорофиллов. Состав бактериальных хлорофиллов, называемых бактериохлорофиллами, отличается от хлорофиллов… … Биологическая энциклопедия
Связывание углерода — общее название совокупности процессов, при которых углекислый газ CO2 преобразуется в органические вещества. Такие процессы используют автотрофы, то есть организмы, которые сами вырабатывают необходимые для себя органические вещества. В частности … Википедия
Темновая фаза фотосинтеза. Цикл Кальвина
Цикл Кальвина
Восстановительный пентозофосфатный цикл, или цикл Кальвина, — серия биохимических реакций, осуществляемая при фотосинтезерастениями (в стромехлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации CO2.
Цикл Кальвина назван в честь американского биохимика Мелвина Кальвина (1911—1997). Часто используются альтернативные названия, указывающие на роль коллег Кальвина в открытии данного биохимического пути (например: цикл Кальвина-Бенсона или цикл Кальвина-Бенсона-Бассама).
Стадии
В цикл вовлекаются АТФ и НАДФ·Н, образованные в ЭТЦ фотосинтеза, углекислый газ и вода; основным продуктом является глицеральдегид-3-фосфат.
Поскольку АТФ и НАДФ·Н могут образовываться в разных метаболических путях, цикл не следует рассматривать строго привязанным к световой фазе фотосинтеза.
Общий баланс реакций цикла можно представить уравнением:
3 CO2 + 6 НАДФ·Н + 5 H2O + 9 АТФ → C3H7O3-PO3 + 3 H+ + 6 НАДФ+ + 9 АДФ + 8 Фн + 3 H2O
Две молекулы глицеральдегид-3-фосфата используются для синтеза глюкозы.
Цикл состоит из трёх стадий: на первой под действием ферментарибулозобисфосфат-карбоксилаза/оксигеназа происходит присоединение CO2 к рибулозо-1,5-дифосфату и расщепление полученной гексозы на две молекулы 3-фосфоглицериновой кислоты (3-ФГК). На второй 3-ФГК восстанавливается до глицеральдегид-3-фосфата (фосфоглицеральдегида, ФГА), часть молекул которого выходит из цикла для синтеза глюкозы, а другая часть используется в третьей стадии для регенерации рибулозо-1,5-дифосфата.
Карбоксилирование
Карбоксилированиерибулозо-1,5-бисфосфата (5-углеродное соединение) осуществляется РиБисКО в несколько стадий.
На первой кетонная группа рибулозы восстанавливается до спиртовой, между 2 и 3 атомами углерода устанавливается двойная связь. Полученное соединение нестабильно и именно оно карбоксилируется с образованием 2-карбокси-3-кето-D-арабитол-1,5-бисфосфата. Его структурный аналог 2-карбокси-D-арабитол-1,5-бисфосфат ингибирует весь процесс.
Новое, уже 6-углеродное соединение, также нестабильно и распадается на две молекулы 3-фосфоглицериновой кислоты (3-фосфоглицерат, 3-ФГК).
Восстановление
Восстановление 3-фосфоглицериновой кислоты (3-ФГК) происходит в две реакции.
Сначала каждая 3-ФГК с помощью 3-фосфоглицераткиназы и с затратой одной АТФ фосфорилируется, образуя 1,3-бисфосфоглицериновую кислоту (1,3-бисфосфоглицерат).
Затем под действием глицеральдегид-1,3-фосфатдегидрогеназы бисфосфоглицериновая кислота восстанавливается НАД(Ф)·H (у растений и цианобактерий; у пурпурных и зелёных бактерий восстановителем является НАД·H) параллельно с отщеплением одного остатка фосфорной кислоты.
Образуется глицеральдегид-3-фосфат (фосфоглицеральдегид, ФГА, триозофосфат). Обе реакции обратимы.
Регенерация
На последней стадии 5 молекул глицеральдегид-3-фосфатов превращаются в три молекулы рибулозо-1,5-бисфосфата.
Вначале под действием трифосфат-изомеразы глицеральдегид-3-фосфат изомеризуется в дигидроксиацетон-фосфат. Фруктозабисфосфат-альдолаза объединяет их во фруктозо-6-фосфат с отщеплением остатка фосфорной кислоты.
Затем следует ряд реакций перестройки углеродных скелетов и образуется рибулозо-5-фосфат. Он фосфорилируется фосфорибулокиназой и рибулозо-1,5-бисфосфат регенерирует.[источник не указан 2801 день]
Открытие
С 1940-х гг. Мелвин Кальвин работал над проблемой фотосинтеза; к 1957 с помощью CO2, меченного по углероду, выяснил химизм усвоения растениями CO2 (восстановительный карбоновый цикл Кальвина) при фотосинтезе. Нобелевская премия по химии (1961).
Схема цикла.
Чёрные кружки — атомы углерода, красные — кислорода, фиолетовые — фосфора, маленькие чёрные окружности — атомы водорода
За световой фазой следует темновая фаза фотосинтеза, во время которой происходит синтез моносахаридов (глюкозы) из углекислого газа с затратой энергии АТФ и восстановительных эквивалентов (НАДФН). Синтез глюкозы является результатом целого ряда последовательных ферментативных реакций, которые назвали циклом Кальвина.
Как было сказано ранее в разделе «Кислородный этап энергетического обмена», в цикле Кребса в митохондриях от молекул органических кислот отрываются молекулы углекислого газа (CO2), промежуточные продукты цикла последовательно окисляются, отрываемые от них атомы водорода присоединяются к НАД+ (т.е. образуется НАДН). В цикле Кальвина происходит все наоборот, к молекулам субстрата присоединяется молекулы углекислого газа (СО2), и они восстанавливаются за счет НАДФН (т.е образуется НАДФ+).
Началом синтеза глюкозы является присоединение молекулы углекислого газа к молекуле пятиуглеродного сахара – рибулозо-1,5-бисфосфата.
При этом образуется шестиуглеродная молекула, которая сразу же распадается на две молекулы трехуглеродной фосфоглицериновой кислоты, которая восстанавливается до трехуглеродных сахаров с затратой АТФ и НАДФН. В результате их дальнейших перестроек и конденсаций образуются рибулозомонофосфат и глюкоза — конечный продукт фотосинтеза. Рибулозомонофосфат фосфорилируется АТФ до рибулозобисфостата, который вновь вступает в цикл Кальвина.
На образование одной молекулы глюкозызатрачивается 18 молекул АТФ и 12 молекул НАДФН, накопленных в процессе световой фазы фотосинтеза.
Какие основные процессы происходят в темновую фазу фотосинтеза?
Следовательно, для темновой фазы фотосинтеза можно представить следующее общее уравнение:
6СО2 + 12НАДФН + 12Н+ + 18АТФ —> С6Н12О6 + 6Н2О + 12НАДФ+ + 18АДФ + 18Фн
Даже если учесть частичные потери энергии на различных стадиях темновой фазы, общий КПД фотосинтеза остается очень высоким и составляет приблизительно 60%.
У некоторых растений (например, сахарного тростника или кукурузы) процесс фотосинтеза идет вначале не через трехуглеродные, а через четырехуглеродные соединения.
Эти растения называются С4-растениями. В отличие от С3-растений им характерен быстрый рост и высокая эффективность фотосинтеза, который протекает даже при очень низких концентрациях углекислого газа. В этом случае углекислый газ присоединяется не к рибулозобисфосфату, а к одному из промежуточных продуктов гликолиза – фосфоенолпирувату.
В результате образуются четырехуглеродные яблочная или аспарагиновая кислоты, которые диффундируют в клетки обкладки сосудистых пучков, где от них отщепляется СО2, вступая в цикл Кальвина.
В этих клетках слабо выражено фотодыхание, связанное с окислением рибулозобисфосфата кислородом, поэтому энергозатраты на фотосинтез резко снижаются (на 50%).
В последние годы благодаря необычайно высокой биологической продуктивности С4-растения привлекают внимание ученых как потенциальный источник органического сырья.
Темновая фаза фотосинтеза
Темновая фаза фотосинтеза – это комплекс ферментативных реакций, во время которой происходит восстановление поглощенного углекислого газа за счет продуктов световой фазы (АТФ и НАДФН). Различают несколько циклов восстановления СО2.
Этот способ ассимиляции СО2 является основным и присущ всем растениям. Он был расшифрован американскими учеными во главе с М. Кальвином. В 1961 году М. Кальвину за установление последовательности реакций в этом цикле и была присуждена Нобелевская премия.
Этот цикл начинается с присоединения СО2 к акцептору – пятиуглеродному сахару рибулозо-1,5-дифосфату (РДФ).
Присоединение СО2 к тому или ионному веществу называется карбоксилированием, а фермент катализирующий такую реакцию – карбоксилазой.
В данной реакции карбоксилирование происходит с участием фермента рибулозодифосфаткарбоксилазы (РДФ-карбоксилаза).
Это самый распространенный в мире фермент.
Продукт реакции, содержащий 6 атомов углерода, в присутствии воды сразу распадается на две молекулы 3-фосфоглицириновой кислоты (3-ФГК):
С данной реакции и начинается цикл Кальвина.
ФГК и является, по современным взглядам, первичным продуктом ассимиляции углерода.
Для дальнейших превращений ФГК необходимы вещества световой фазы фотосинтеза: АТФ и НАДФН. Сначала 3-ФГК фосфорилируется при участии АТФ и образуется 1,3-дифосфоглицириновая кислота. Реакция катализируется ферментом фосфоглицераткиназой:
Затем происходит восстановление за счет НАДФН и образуется фосфоглицириновый альдегид ФГА:
Суммарный результат второй стадии: восстановление карбоксильной группы кислоты (–СООН) до альдегидной (–СНО).
Процесс превращения катализируется дегидрогеназой фосфоглициринового альдегида.
Дальнейшее превращение фосфоглициринового альдегида может происходить 4 путями.
ФГА частично с помощью триозофосфатизомеразы превращается в фосфодиоксиацетон (ФДА):
Это первый путь превращения ФГА.
Таким образом, в клетку поступают две найпростейшие формы сахаров: альдоза (ФГА) и кетоза (ФДА).
Это трехуглеродные сахара (триозосахара) с присоединенной к ним фосфатной группой содержат больше химической энергии, чем ФГК. Это первые углеводы, которые образуются при фотосинтезе.
С помощью альдолазы фосфодиоксиацетон (ФДА) соединяется с другой молекулой ФГА и образуется молекула фруктозо-1,6-дифосфата (ФДФ).
Это второй путь превращения ФГА.
Фруктозо-1,6-дифосфат дефосфорилируется и превращается во фруктозо-6-фосфат (Ф-6-Ф), что сопровождается накоплением в среде неорганического фосфата.
Фруктозо-6-фосфат в дальнейшем может выйти из цикла и использоваться для синтеза запасных форм углеводов: сахарозы, крахмала, других полисахаридов.
Однако ФГА (третий путь) может реагировать с эквимолярным количеством Ф-6-Ф, в результате образуются равные количества ксилулозо-5-фосфата и эритрозо-4-фосфата (транскетолаза).
Затем эритрозо-4-фосфат реагирует с равным количеством ФДА и образуется седагептулозо-1,7-дифосфат (альдолаза), которая фосфорилируется до седагептулозо-7-фосфата с участием седагептулозодифосфатазы.
Четвертый путь превращения ФГА связан с его реакцией с седагептулозо-7-фосфатом с образованием равных (эквимолярных) количеств рибозо-5-фосфата и ксилулозо-5-фосфата. Ксилулозо-5-фосфат эпимиризуется, а рибозо-5-фосфат изомерезуется до рибулозо-5-фосфата, последняя фосфорилируется за счет АТФ и образуется рибулозо-1,5-дифосфат – первичное соединение цикла Кальвина (акцептор СО2).
В этих реакциях тратится еще три молекулы АТФ.
Из приведенных реакций цикла Кальвина видно, что фотосинтез, являясь процессом запасания энергии, тем не менее, для своего существования требует затраты энергии.
В цикле Кальвина образование фруктозо-6-фосфата можно представить в виде следующего суммарного выражения:
6СО2 + 12НАДФН + 12Н+ + 18АТФ + 11Н2О →
фруктозо-6-фосфат + 12НАДФ+ + 18АДФ + 17Фн
18 молекул АТФ запасают около 140 ккал и 12 НАДФН –
Следовательно, поглощено около 755 ккал энергии. При этом в гексозах запасается около 670 ккал/моль. При таком балансе КПД составляет около 90 %.
10 % энергии растрачивается на поддержание цикла.
АТФ и НАДФН, которые образуются в световой стадии и используются на восстановление СО2, получили название ассимиляционной силы.
Цикл Кальвина подразделяют на три фазы:
– карбоксилирующую РДФ + СО2 → 2ФГК;
– восстановительную ФГК → ФГА;
– регинирующую ФГА → РДФ.
Каждая шестая молекула ФГА выходит из цикла и используется на синтез сахарозы или полисахаров, тогда как остальные 5 молекул через приведенные выше промежуточные реакции преобразуются в три молекулы рибулозо-1,5-дифосфата.
Так как первичный продукт цикла Кальвина – ФГК – содержит три атома углерода, то этот цикл получил название С3-цикла ассимиляции СО2. Упрощенную схему цикла можно представить в виде (рис.2.18):
Рис. 2.18. Упрощенная схема цикла Кальвина
Последовательность реакций на пути преобразования СО2 в сахар удалось выявить благодаря использованию радиоактивного углерода 14С и хромотографии на бумаге.
Описанный цикл восстановления СО2 до сахаров локализован в хлоропластах, так же как и биосинтез крахмала из образованных в них гексозофосфатов.
«Главный» же по количеству сахар, запасенный в растительной клетке – сахароза, – синтезируется уже вне хлоропласта: в слое цитоплазмы, прилегающем к наружной мембране этой органеллы. Сахароза синтезируется из Ф-6-Ф, образованной из ФГА и ФДА, которые в отличие от других сахаров цикла (пентоз и гексоз) легко транспортируются через мембраны хлоропластов.
Скорость цикла Кальвина зависит не только от количества образованных в световой стадии АТФ и НАДФН, но и от их соотношений.
Только соотношение 3АТФ и 2НАДФН обеспечивает активное восстановление углерода и запасание энергии.
Когда степень сопряжения работы ЭТЦ фотосинтеза с фотофосфорилированием мала, тогда интенсивность фотосинтеза, в первую очередь, может снизиться за счет уменьшения количества рибулозо-1,5-дифосфата, так как в этом случае будет лимитироваться фосфорилирование рибулоза-5-фосфата.
Кроме этого, в цикле при недостатке АТФ и НАДФН уменьшается возможность восстановления ФГК до триоз и поэтому одновременно со снижением интенсивности фотосинтеза среди ассимилятов (продуктов фотосинтеза) клетки увеличивается часть неуглеродных соединений.
Такое явление характерно, например, для растений, выращенных при слабом освещении.
Нобелевские лауреаты: Мелвин Кальвин
Американский биохимик Мелвин Кальвин
Как сын эмигрантов из России заинтересовался составом продуктов питания и не оправдал прогнозов своего школьного учителя, а также что происходит на «темной» стороне фотосинтеза, рассказывает наш очередной выпуск рубрики «Как получить Нобелевку».
Мелвин Эллис Кальвин
Родился 8 апреля 1911 года, Сент-Пол, Миннесота, США
Умер 8 января 1997 года, Беркли, Калифорния, США
Нобелевская премия по химии 1961 года. Формулировка Нобелевского комитета: «За исследование усвоения двуокиси углерода растениями (for his research on the carbon dioxide assimilation in plants)».
Родители нашего героя были из будущего бывшего СССР. Отец был эмигрантом из Литвы, мать – из Грузии. Роза Хервиц и Элиас Кальвин приехали в США в поисках лучшей доли, ну а потом осели, переехали из Миннесоты в Мичиган, в Детройт, где и учился будущий нобелиат.
Пишут, что Мелвин с детства отличался любознательностью, а на выбор профессии повлиял семейный бизнес: в Детройте его родители держали продуктовую лавку. Естественно, мальчика интересовало, из чего состоят продукты питания. Именно так он решил стать химиком, а решив, поступил в Мичиганский колледж наук и технологии (ныне – Мичиганский технологический университет), где получил степень бакалавра в 1931 году. Удивительно, но он посрамил своего учителя физики, который из-за любви мальчика к скоропалительным и поспешным выводам без должного обоснования говорил, что его ученик никогда не станет ученым. Через четыре года в Миннесотском университете Кальвин получил PhD за диссертацию о сродстве к электрону брома и йода.
Затем последовала командировка в Европу, в Манчестер: помогла стипендия Рокфеллера. В Манчестере Кальвину повезло: он попал в руки замечательного физикохимика, математика, экономиста, философа науки, а главное, выдающегося учителя, венгра Майкла Поляни. Позже два его ученика, Кальвин и физик Юджин Вигнер, а также его собственный сын Джон Чарльз Поляни станут лауреатами Нобелевской премии по физике и по химии. Не зря в официальной биографии Кальвина Поляни именуется «интеллектуальным гигантом».
Кальвин что открыл в биологии
Темновые реакции протекают в строме хлоропластов, не требуют света и контролируются ферментами. В результате этих реакций происходит восстановление диоксида углерода с использованием энергии (АТФ) и восстанавливающей способности (восстановленный НАДФ), произведенных в ходе световых реакций. Последовательность темновых реакций была определена в США Кальвином, Бенсоном и Бессемом в 1946—1953 годах. За эту работу в 1961 г. Кальвин был удостоен Нобелевской премии.
Схема, показывающая принцип устройства аппарата Кальвина типа «леденец на палочке». Он состоит из тонкого прозрачного сосуда, в котором выращивается культура одноклеточных водорослей. В экспериментах по определению пути, проходимому углеродом в процессе фотосинтеза, через суспензию водорослей продували диоксид углерода, содержащий радиоактивный углерод.
Опыты Кальвина
В своей работе Кальвин использовал изотоп углерода 14 С (период полураспада 5570 лет, см. приложение 1), который стал доступен для исследователей только в 1945 г.
Кроме того, Кальвин использовал бумажную хроматографию, которая в то время была относительно новым, но редко применяемым методом. Культуры одноклеточных зеленых водорослей Chlorella выращивали в популярном в настоящее время аппарате, по форме напоминающем леденец на палочке. Культуру хлореллы выдерживали с 14 С02 в течение различных промежутков времени, а затем быстро убивали, помещая в горячий метанол. Растворимые продукты фотосинтеза экстрагировали, концентрировали и разделяли при помощи двумерной бумажной хроматографии (рис. 7.16 и приложение 1). Цель данного эксперимента состояла в том, чтобы проследить маршрут, по которому меченый углерод через ряд промежуточных соединений включается в конечный продукт фотосинтеза.
Идентификация продуктов фотосинтеза в водорослях после короткого периода освещения в присутствии радиоактивного диоксида углерода |4С02. Для разделения продуктов используется бумажная хроматография. Расположение соединений на бумаге позволяет их идентифицировать. Присутствие синтезированных веществ на хроматограмме выявляли при помощи фотопленки. Она темнела там, где находились радиоактивные соединения.
Уже после 1 мин инкубации с 14 С02 синтезировались многие сахара и органические кислоты, в том числе аминокислоты. Используя краткосрочные выдержки (в течение 5 с и менее), Кальвину удалось идентифицировать первый продукт фотосинтеза — кислоту, содержащую 3 атома углерода (3С-кислота) — фосфоглицериновую (ФГ). В дальнейшем исследователь определил всю последовательность промежуточных соединений, в которые включается меченый углерод (стадии этого процесса будут рассмотрены ниже). С тех пор последовательность этих реакций носит название цикл Кальвина.