Капролактам для чего используется
Капролактам для чего используется
Капролактам (гексагидро-2-азепинон, лактам e-аминокапроновой к-ты, 2-оксогексаметиленимин).
Физические свойства капролактама
Систематическое наименование | азепан-2-он |
Традиционное название | капролактам |
Описание | Белое, гигроскопичное, кристаллическое твердое вещество |
Молекулярная формула | C6H11NO |
Молярная масса | 113.16 г/моль |
Плотность ( при 70 °С) | 1,01 г/см3 |
Точка кипения | 136-138 °C / 10 мм Hg |
Точка плавления | 69-70 oC |
Коэффициент перевода | 1ppm=4.6 мг/м3 @ 25 oC |
Технология производства капролактама
В промышленности капролактам получают из бензола, фенола или толуола по схемам:
Метод синтеза капролактама из толуола включает: окисление толуола при 165°С в присутствии бензоата Со; гидрирование получающейся бензойной кислоты при 170°С, 1,4-1,5 МПа в присутствии 5%-ной взвеси Pd на мелкодисперсном угле; нитрозирование циклогексанкарбоновой кислоты под действием нитрозилгидросульфата (нитрозилсерной к-ты) при 75 80 °С до капролактама-сырца. Некоторые стадии этой схемы недостаточно селективны, что приводит к необходимости сложной очистки получаемого капролактама. Выход капролактама 71% в расчете на исходный продукт.
Полученный любым из перечисленных методов капролактам предварительно очищают с помощью ионообменных смол, NaClO и КМnО4, а затем перегоняют. Побочный продукт производсства (NH4)2SO4 (2,5-5,2 т на 1 т К.), который используется в сельском хозяйстве в качестве минерального удобрения. Известны также методы получения капролактама из неароматического сырья (фурфурола, ацетилена, бутадиена, этиленоксида), которые не нашли промышленного применения.
Отраслевая структура потребления
Всеобщая экономическая рецессия оказала значительное влияние на мировой рынок капролактама. Спрос на полиамидные волокна и пластики в текстильной и автомобильной отраслях в 2008 году упал, что в свою очередь повлекло снижение потребления капролактама. В 4 квартале 2008 года объемы продаж снизились в разных секторах до 40%. В целом по итогам 2008 года зафиксировано падение спроса на капролактам на 5-6%. В январе 2009 года спрос начал кое-как восстанавливаться во многом за счет накопленных производителями запасов за последний квартал прошлого года.
Динамика мирового спроса на капролактам, 1998-2008, тыс. тонн
Источник: «SRI Consulting», «Yarns and Fibers Exchange»
Полиамидные волокна и нити, как правило, применяются в производстве текстиля, ковровых покрытий, промышленных нитей, используемых в свою очередь для изготовления шинного корда. Кордная нить – крупнейший и наиболее быстрорастущий сегмент рынка ПА6.
ПА6 смола также является основной для производства конструкционных пластиков, используемых для производства компонентов электронной и электрической техники, автомобильных деталей. В упаковочной отрасли применяется ориентированная полиамидная пленка, также изготовленная на основе ПА6. Небольшие объемы капролактама уходят на синтез лизина, а также в качестве агента в производстве полиуретана.
Источник: по данным ICB
С анализом российского и мирового рынков капролактама Вы можете познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Мировой рынок капролактама».
Капролактам
Гексагидро-2-азепинон, лактам e-аминокапроновой кислоты, 2-оксогексаметиленимин), молекулярная масса 113,16; бесцветные гигроскопические кристаллы, температура плавления 68,8 °С, температура кипения 262,5°С; плотность при 70°С 1,02 г/см 3
Капролактам хорошо растворим в воде, органических растворителях и в разбавленной H2SO4; теплота растворения в воде 35,17 Дж/кг, в концентрированной H2SO4 611,27 Дж/кг (298-305 К).
По химическим свойствам капролактам – типичный представитель лактамов. При нагревании с концентрированными минеральными кислотами образует соли; в присутствии небольших количеств воды, спиртов, аминов, карбоновых кислот при 250-260°С полимеризуется с образованием полиамидной смолы, из которой затем получают волокно капрон.
В промышленности наиболее распространение получил метод синтеза капролактама из бензола. Технологическая схема включает гидрирование бензола в циклогексан в присут. Pt/Al2O3 или никель-хромового катализатора при 250-350 и 130-220°С, соответственно. Жидкофазное окисление циклогексана в циклогексанон осуществляют при 140-160°С, 0,9-1,1 МПа в присутствии нафтената или стеарата Са. Получающийся в результате окисления циклогексанол превращают в циклогексанон путем дегидрирования на цинк-хромовых (360-400°С), цинк-железных (400°С) или медь-магниевых (260-300°С) смешанных катализаторах. Превращение в оксим проводят действием избытка водного раствора сульфата гидроксиламина в присутствии щелочи или NH3 при 0-100°С. Завершающая стадия синтеза капролактама – обработка циклогексаноноксима олеумом или концентрированной H2SO4 при 60-120°С (перегруппировка Бекмана). Выход капролактама в расчете на бензол 66-68%.
При фотохимическом методе синтеза капролактама из бензола циклогексан подвергают фотохимическому нитрозированию в оксим под действием NOCl при УФ облучении. Метод синтеза капролактама из фенола включает гидрирование последнего в циклогексанол в газовой фазе над Pd/Al2O3 при 120-140°С, 1-1,5 МПа, дегидрирование полученного продукта в циклогексанон и дальнейшую обработку как в методе синтеза из бензола. Выход 86-88%.
Метод синтеза капролактама из толуола включает: окисление толуола при 165°С в присутствии бензоата Са; гидрирование получающейся бензойной кислоты при 170°С, 1,4-1,5 МПа в присутствии 5%-ной взвеси Pd на мелкодисперсном угле; нитрозирование циклогексанкарбоновой кислоты под действием нитрозилгидросульфата (нитрозилсерной кислоты) при 75-80°С до капролактама-сырца. Некоторые стадии этой схемы недостаточно селективны, что приводит к необходимости сложной очистки получаемого капролактама. Выход К. 71% в расчете на исходный продукт.
Полученный любым из перечисленных методов капролактам предварительно очищают с помощью ионообменных смол, NaClO и КМnО4, а затем перегоняют. Побочный продукт производства (NH4)2SO4 (2,5-5,2 т на 1 т капролактама), который используется в сельском хозяйстве в качестве минерального удобрения.
Известны также методы получения капролактама из неароматического сырья (фурфурола, ацетилена, бутадиена, этиленоксида), которые не нашли промышленного применения.
Капролактам применяют для получения поли-e-капроамида. Объем мирового производства 2,7 млн.т/год; из них из бензола получают 83,6%, из фенола – 12%, из толуола – 4,4% капролактама.
Объявления о покупке и продаже оборудования можно посмотреть на
Обсудить достоинства марок полимеров и их свойства можно на
Зарегистрировать свою компанию в Каталоге предприятий
Капролон: характеристики,применение,преимущества,цена,фото
Наука не стоит на месте, а постоянно развивается, в результате чего появляются новые высокотехнологичные материалы, нашедшие свое применение в различных отраслях промышленности. На сегодняшний день некоторые полимеры способны не только успешно конкурировать с металлами и их сплавами, но и в некоторых случаях по своим характеристикам считаются лучше их.
Одним из самых распространенных высокотехнологичных материалов, которые появились сравнительно недавно, является капролон, по своим свойствам превосходящий металл по различным показателям, включая коррозийную стойкость и прочность.
Характеристика
Довольно часто такой полимер ассоциируют с заменителем сплавов и металлов в деталях, которые подвергаются сильному износу за счет силы трения. Благодаря антифрикционным свойствам этот материал применяют в качестве подшипников и прокладок.
Капролон является абсолютно водонепроницаемым и имеет высокий уровень коррозийной стойкости. Может довольно продолжительное время работать в следующих агрессивных средах:
Обладая диэлектрическими свойствами, капролон успешно применяют при изготовлении изоляционных компонентов и электродвигателей.
Весит полимер в 6 раз меньше стали, что значительно повышает его популярность. Конструкции с деталями, изготовленными из капролона вместо железа, обладают облегченным весом, что иногда является критичным показателем. Материал подвергают всем видам механической обработки, что позволяет изготовить из него такую деталь с достаточно высоким классом точности поверхности.
Преимущества
Детали из капролона являются долговечными и замечательно поглощают ударные нагрузки, благодаря чему их используют для изготовления тележек, корпусов различных механизмов, приводов редукторов, транспортеров, ступиц, шестеренок, звездочек и многих других агрегатов, в которых присутствуют ударные нагрузки на корпус изделия или элементы. Полиамидные стержни и листы устойчивы к воздействию:
Изготовленные из этого материала детали используются в узлах трения и даже без смазки. Преимущество листового и стержневого капролона заключается в том, что он является замечательным диэлектриком, по своим качествам не уступающий таким материалам, как поливинилхлорид и полистирол.
Обладая низким коэффициентом трения, изделия из Полиамида 6 быстро и легко устанавливаются вместо стальных и бронзовых деталей. Кроме того, они обладают гораздо меньшим весом, чем металлические изделия.
Листовой или стержневой капролон замечательно обрабатывается на точильных, фрезерных и шлифовальных станках. Изделия из такого материала гарантируют более надежную и длительную службу в узлах трения и скольжения. Стержни из капролона выдерживают различные нагрузки и удары, а также характеризуются длительным сроком эксплуатации.
Область применения
Обладая замечательными свойствами и техническими характеристиками, капролон с успехом применяют в разных отраслях промышленности. Наиболее востребован он в следующих сферах:
Применение капролона в промышленности и строительстве
Изделия из капролона
Вдобавок ко всему, капролон может поглощать шум и существенно снижать вибрационные и динамические нагрузки. В совокупности, все эти технические характеристики и сделали его одним из наиболее востребованных и популярных полимеров. Более того, данный материал с легкостью может быть обработан разными механическими способами. Например, обработка капролона выполняется посредством фрезерования, точения, разрезания, сверления, а также шлифования. Таким образом, используя обычное заводское оборудование, возможно сделать различные изделия из капролона взамен более тяжелых и менее надежных металлических.
Что делают из капролона?
Судостроение и судоремонт
Подшипники гребных и дейдвудых валов
Веерные ролики и крышки клапанов
Клапаны, поршни, шестерни, крыльчатки
Энергетика и электротехника
Турбинные вкладыши и шаровые мельницы
Шнеки питания, золотоудаления и пылевые
Подшипники для насосов и оборудования
Подшипники для камнедробильных систем
Вкладыши седлового подшипника
Втулки центральной цапфы и блока наводки
Подшипники для насосов
Скребки насосных штанг
Решетки для вакуумных фильтров
Подшипники качения и скольжения
Направляющие и вкладыши узлов трения
Втулки, шестерни, звездочки, поршни
Крановое и транспортное оборудование
Шкивы, блоки, ролики колесных механизмов
Корпуса, кронштейны, ступицы колес
Осевые опоры, втулки, подшипники
Сепараторы, насосы, ролики, шестерни
Подшипники, направляющие, втулки
Ниппеля, планки, колодки, шнеки
И это далеко не полный список возможной продукции из данного полимера. Поскольку сама обработка капролона выполняется на 35% более легко и быстро, нежели обработка других стальных аналогов, а итоговая стоимость у таких изделий будет гораздо ниже при высоких технических характеристиках, то многие предприятия выбирают именно этот материал для производства новой продукции. В свою очередь, очень многие инженеры стараются заменить старые изношенные стальные детали в промышленной или частной гражданской технике на высоконадежные и эффективные детали из капролона или же из его полимерных аналогов.
Аналоги капролона
Зарубежные аналоги капролона
Канада, США, Бельгия
Канада, США, Швейцария
Service Color Corp.
Adell Ptastics Inc.
Япония, США, Германия, Таиланд
Канада, США, Швейцария
Канада, США, Дания, Англия
Adell Ptastics Inc.
Япония, США, Германия, Таиланд
Полиамид 610
(ПА-610)
Кроме того, на постсоветском пространстве капролон зачастую обозначается как полиамид ПА-6 блочный. Такое название было дано благодаря тому, что данный материал выпускался в форме блоков. Однако уже долгое время основные формы его выпуска — стержень, втулка, лист или гранулы. Нерентабельность блочной формы обусловлена тем, что при изготовлении деталей из капролона значительная часть материала стачивалась, превращалась в стружку и шла в отход. Само собой, это было крайне невыгодно. Тем не менее, это название осталось в обиходе и используется до сих пор, а некоторые фирмы продолжают выпуск такой формы.
Примечателен тот факт, что капролон имеет несколько структурных модификаций, которые отличаются по степени устойчивости к нагрузкам и другим техническим характеристикам. В зависимости от предназначения и рабочих условий, производится полиамид ПА-6, а также полиамид ПА-6 маслонаполненный, то есть содержащий в себе специальную смазку. При этом маслонаполненный капролон будет иметь уже не светлый окрас, а черный. Кроме того, в темных тонах будет выполняться также полиамид ПА-6 МДМ с дисульфидом молибдена, и еще один особый вид данного полимера — полиамид ПА-6 МГ графитонаполненный.
Помимо этого есть еще и стекловолокнистый полиамид ПА-6, который содержит в структуре стекловолокно, придающее ему уже наибольшую жесткость и прочность. На этом изделия с префиксом «6» заканчиваются, однако идут уже другие модификации. Например, существует полиамид-11, который практически не подвержен старению. Существует и похожий на него полиамид-12. Кроме того, выделяют полиамид-46, полиамид-66 и полиамид-610. Каждый из них имеет чуть более лучшие технические показатели, чем материал с префиксом «6». Но здесь важно учесть, что это — не аналоги капролона, это — его структурные модификации.
Сравнение с фторопластом
Капролон — один из многих полимеров, применяемых для замены металлов. Из всех аналогов наиболее часто его сравнивают со фторопластом и полиуретаном. Технические характеристики фторопласта и полиамида в сравнении:
Фторопласт — мягкий и текучий полимер, не подходит для использования при высоких нагрузках. Срок службы у фторопласта выше, чем у полиамида-6, и по прочностным характеристикам фторопласт имеет лучшие показатели
Однако капролон отличается большей доступностью по цене, и это часто определяет выбор производителей в его пользу
. Подробнее о фторопласте Ф4 можно узнать здесь.
Полиуретан применяют взамен резины, традиционных пластмасс, а иногда и металлов. Он незаменим при изготовлении различных прокладок и уплотнений.
Благодаря применению новых полимерных материалов у производителей различного рода механизмов появилась возможность значительного облегчения и удешевления конструкций. Это приносит значительную экономическую выгоду и часто увеличивает срок службы изделий.
Среди большого разнообразия современных полимерных материалов выделяется фторопласт и капролон, и это неудивительно, ведь они оба находят широкое применение почти во всех отраслях промышленности. Какими свойствами обладают оба материала, чем они отличаются и в каких сферах находят применение фторопласт и капролон?
Капролон — полимерный материал
Капролон — полимерный материал (полиамид 6 PA-6) с высокими техническими характеристиками, более 30 лет используется в современной промышленности и активно заменяет детали из металла, бронзы, других сплавов. Капролон — российское название, часто встречается другое его наименование — полиамид 6 или ПА6 (PA6). Другие страны производят этот же материал под своими запатентованными наименованиями: Текамид (Tecamid), Эрталон (Ertalon), Текаст (Teсast), Ультралон (Ultralon), Нейлон (Neylon) и так далее, все эти полимеры — аналоги капролона. У нас еще можно встретить старое название — полиамид ПА6 блочный, обусловленное формой выпуска. На данный момент оно не актуально, при обработке блока остается большое количество отходов, стружки. Капролон выпускают в форме пластин, листов, стержней, кругов. Эти формы удобны для обработки и получения конечной продукции.
Капролон изготавливают двух марок: марка «А» — высший сорт, и марка «Б» — первый сорт, физико-механические свойства этих марок отличны и представлены в таблице:
Капролон (полиамид 6 блочный) марка «А» и марка «Б» основные параметры по ТУ 2224-001-78534599-2006:
Наименование показателей
Капролон стержни, круги, листы, плиты
PA 6, ненаполненный
PA 6 HS, наполнитель CM025, термо-
стабилизатор
PA 6 OFN, наполнитель CM015, низко-
температурное масло
Марка «А»
Марка «Б»
Гладкая поверхность без раковин, трещин, от белого до кремового цвета
Гладкая поверхность, от белого до кремового цвета, раковины, сколы не более 2 шт на 10% всей поверхности
Листы, стержни с гладкой поверхностью без раковин, трещин, цвет голубой
Листы, стержни с гладкой поверхностью без раковин, трещин, от серого до черного цвета
Количество пор размером от 0,8мм до 1,5мм на поверхности продукции, шт, не более
Изгибающее напряжение при величине прогиба, равной 1,5 толщины образца, мпа, не менее
В промышленности получение капролактама из бензола считается наиболее перспективным методом. Рассмотрим подробнее особенности данного производства, а также основные характеристики получаемого соединения.
Особенности синтеза
В технологической цепочке есть гидрирование бензола в циклоалкан (при платиновом либо никель-хромовом катализаторе, температуре 220°С). Образующийся в ходе окисления циклогексан превращают в циклогексанон при 0,9-1,1 МПа, 140-160°С. Далее путем дегидрирования на хромово-цинковых катализаторах (в присутствии щелочи) его превращают в оксим. На последнем этапе циклогексанон оксим обрабатывают олеумом либо концентрированной серной кислотой, превращая его в капролактам (температура синтеза- 60-120°С).
Вам будет интересно: Чем отличается разум от ума? Основные отличия и функции
Особенности процесса
Вам будет интересно: Политика Гитлера: суть, основные положения и исторические факты
В каком процентном соотношении получают описанным способом капролактам? По сути, выход продукта составляет 66-68 процентов. Именно поэтому были разработаны иные технологии производства. В частности, фотохимический синтез, при котором посредством фотохимического нитрозирования циклогексана в капролактам под воздействием УФ облучения выходит 86-88 %.
В химической промышленности капролактам производят и из толуола, окисляя его при 165°С (на платиновом катализаторе), последующем нитрозировании получаемой циклогексан карбоновой кислоты в капролактам-сырец.
Что представляет собой полученный одним из способов, перечисленных выше, капролактам? По сути, это твердое вещество, в котором есть примеси. Сначала его необходимо очистить от них с помощью ионообменных смол, затем перегнать. Побочным продуктом данного производства является сульфат аммония — ценное минеральное удобрение.
Твердый капролактам перевозят в бумажных многослойных мешках, а жидкий продукт транспортируют в специальных цистернах с дополнительным обогревом. В настоящее время данный компонент получают в основном из бензола, фенола, толуола.
Основные свойства
Чем отличается капролактам? Свойства данного гетероциклического соединения заслуживают отдельного рассмотрения. Это белое кристаллическое вещество, имеющее хорошую растворимость в воде, эфире, спирте, бензоле. Нагревание его в присутствии аминов, спирта и воды приводит к полимеризации капролактама в полиамидную смолу. Именно это вещество является основой для изготовления полимера. Итак, мономером для процесса выступает именно капролактам. Что это такое — полимеризация? Под данным термином подразумевают процесс получения из мономера продукта — капрона.
Области применения
Каково основное предназначение рассматриваемого производства? Зачем в химической промышленности получают капролактам? Применение его достаточно многообразно. Он необходим для полиамидных пленок, инженерных пластинок. В минимальных объемах применяется в синтезе лизина и полиуретана. Почему так востребован капролактам? Что это такое? Данное органическое соединение применяют в синтезе растворителей для красок, а также при создании синтетической кожи, пластификаторов.
Потребление по отраслям
Полиамидные волокна нужны для изготовления текстиля, промышленных нитей, ковровых изделий. Именно этот товар становится все более популярным на рынке полимерных материалов.
Важные моменты
В изготовлении конструкционных пластиков востребована и Паб смола. Она является компонентом для производства элементов электрической и электронной техники, а также автомобильных деталей. Ориентированная полиамидная пленка – это материал, который широко используется в упаковочной отрасли. При его изготовлении также применяется капролактам.
Что это такое – лизин? Остановимся на данном веществе немного подробнее. Лизин- это аминокислота, которая необходима человеку для нормального функционирования организма. Недостаток этого вещества приводит к нарушению иммунной системы человека, что негативно сказывается на здоровье организма в целом. Химический синтез лизина из капролактама путем нескольких последовательных стадий – это технология, которая позволяет решать проблему дефицита данного вещества. Применение инновационных технологий дает возможность ускорять процесс, снижать его себестоимость.
Подведем итоги
Среди тех продуктов, которые можно получить из капролактама, особый интерес представляют полиамидные волокна и смолы. К частности, максимальную распространенность в настоящее время получил и капрон. Этот полимер незаменим во многих промышленных областях. Применяют его в машиностроении, хирургической медицине, химическом производстве, приборостроении. Именно из капрона изготавливают качественные стропы для современных парашютов, канаты, веревки, разнообразные рыболовные снасти, струны для музыкальных инструментов, одежду, игрушки.
Огромное количество полимерных материалов, получаемых из капролактама, объясняют востребованность данного материала на мировом рынке. Так, прочность капроновых нитей в десять раз больше, чем у шелка, в 50 раз превосходит вискозу. Для производства полимеров используется только качественное сырье.
Именно поэтому особое внимание в современной химической промышленности уделяют предварительной очистке капролактама от дополнительных примесей (пыли, влаги). В противном случае трудно рассчитывать на получение капрона желаемого качества.
За последнее десятилетие выпуск пластических масс и синтетически смол существенно увеличился. Появляются новые материалы, создаваемые на основе капролактама. Растет и востребованность в данных соединениях в машиностроении, строительстве.