Квантовая физика для чайников что это
Квантовая физика для чайников: суть простыми словами. Поймёт даже ребёнок. Точнее, особенно ребенок!
Добро пожаловать на блог! Я очень рада Вам!
Наверняка Вы много раз слышали о необъяснимых тайнах квантовой физики и квантовой механики. Её законы завораживают мистикой, и даже сами физики признаются, что до конца не понимают их. С одной стороны, любопытно понять эти законы, но с другой стороны, нет времени читать многотомные и сложные книги по физике. Я очень понимаю Вас, потому что тоже люблю познание и поиск истины, но времени на все книги катастрофически не хватает. Вы не одиноки, очень многие любознательные люди набирают в поисковой строке: «квантовая физика для чайников, квантовая механика для чайников, квантовая физика для начинающих, квантовая механика для начинающих, основы квантовой физики, основы квантовой механики, квантовая физика для детей, что такое квантовая механика». Именно для Вас эта публикация.
Вам станут понятны основные понятия и парадоксы квантовой физики. Из статьи Вы узнаете:
И еще: Вам интересно узнать о чисто прикладном, практическом применении квантовой физики? Тогда читайте статью Что такое квантовый компьютер и для чего он нужен? Просто о сложном.
Что такое квантовая физика и квантовая механика?
Квантовая механика — это часть квантовой физики.
Почему же так сложно понять эти науки? Ответ прост: квантовая физика и квантовая механика (часть квантовой физики) изучают законы микромира. И законы эти абсолютно отличаются от законов нашего макромира. Поэтому нам трудно представить то, что происходит с электронами и фотонами в микромире.
Пример отличия законов макро- и микромиров: в нашем макромире, если Вы положите шар в одну из 2-х коробок, то в одной из них будет пусто, а в другой — шар. Но в микромире (если вместо шара — атом), атом может находиться одновременно в двух коробках. Это многократно подтверждено экспериментально. Не правда ли, трудно это вместить в голове? Но с фактами не поспоришь.
Для того, чтобы легче было понять законы квантовой физики и механики (Википедия), надо в некотором смысле абстрагироваться от привычных нам законов классической физики. И представить, что Вы занырнули, как Алиса, в кроличью нору, в Страну чудес.
Кстати, статью можно читать, как сказку, вместе с детьми. Они ещё не утратили наивную чистоту восприятия окружающего мира и часто могут понять физику, особенно квантовую, лучше взрослых.
А вот и мультик для детей и взрослых. Рассказывает о фундаментальном эксперименте квантовой механики с 2-мя щелями и наблюдателем. Длится всего 5 минут. Посмотрите его перед тем, как мы углубимся в основные вопросы и понятия квантовой физики.
Квантовая физика для чайников видео. В мультике обратите внимание на «глаз» наблюдателя. Он стал серьёзной загадкой для учёных-физиков.
Что такое интерференция?
В начале мультика было показано на примере жидкости, как ведут себя волны – на экране за пластиной со щелями появляются чередующиеся тёмные и светлые вертикальные полосы. А в случае, когда в пластину «стреляют» дискретными частицами (например, камушками), то они пролетают сквозь 2 щели и попадают на экран прямо напротив щелей. И «рисуют» на экране только 2 вертикальные полосы.
Интерференция света – это «волновое» поведение света, когда на экране отображается много чередующихся ярких и тёмных вертикальных полос. Еще эти вертикальные полосы называются интерференционной картиной.
В нашем макромире мы часто наблюдаем, что свет ведёт себя, как волна. Если поставить руку напротив свечи, то на стене будет не чёткая тень от руки, а с расплывающимися контурами.
Итак, не так уж всё и сложно! Нам сейчас вполне понятно, что свет имеет волновую природу и если 2 щели освещать светом, то на экране за ними мы увидим интерференционную картину. Теперь рассмотрим 2-й эксперимент. Это знаменитый эксперимент Штерна-Герлаха (который провели в 20-х годах прошлого века).
В установку, описанную в мультике, не светом светили, а «стреляли» электронами (как отдельными частицами). Тогда, в начале прошлого века, физики всего мира считали, что электроны – это элементарные частицы материи и должны иметь не волновую природу, а такую же, как камушки. Ведь электроны – это элементарные частицы материи, правильно? То есть, если ими «бросать» в 2 щели, как камушками, то на экране за прорезями мы должны увидеть 2 вертикальные полоски.
Но… Результат был ошеломляющий. Учёные увидели интерференционную картину – много вертикальных полосок. То есть электроны, как и свет тоже могут иметь волновую природу, могут интерферировать. А с другой стороны стало понятно, что свет не только волна, но немного и частица — фотон (из исторической справки в начале статьи мы узнали, что за это открытие Энштейн получил Нобелевскую премию).
Может помните, в школе нам рассказывали на физике про «корпускулярно-волновой дуализм»? Он означает, что когда речь идет об очень маленьких частицах (атомах, электронах) микромира, то они одновременно и волны, и частицы
Это сегодня мы с Вами такие умные и понимаем, что 2 выше описанных эксперимента – стрельба электронами и освещение щелей светом – суть одно и тоже. Потому что мы стреляем по прорезям квантовыми частицами. Сейчас мы знаем, что и свет, и электроны имеют квантовую природу, являются и волнами, и частицами одновременно. А в начале 20-го века результаты этого эксперимента были сенсацией.
Внимание! Теперь перейдём к более тонкому вопросу.
Мы светим на наши щели потоком фотонов (электронов) – и видим за щелями на экране интерференционную картину (вертикальные полоски). Это ясно. Но нам интересно увидеть, как пролетает каждый из электронов в прорези.
Предположительно, один электрон летит в левую прорезь, другой – в правую. Но тогда должны на экране появиться 2 вертикальные полоски прямо напротив прорезей. Почему же получается интерференционная картина? Может электроны как-то взаимодействуют между собой уже на экране после пролёта через щели. И в результате получается такая волновая картина. Как нам за этим проследить?
Будем бросать электроны не пучком, а по одному. Бросим, подождём, бросим следующий. Теперь, когда электрон летит один, он уже не сможет взаимодействовать на экране с другими электронами. Будем регистрировать на экране каждый электрон после броска. Один-два конечно не «нарисуют» нам понятной картины. Но когда по одному отправим в прорези их много, то заметим…о ужас – они опять «нарисовали» интерференционную волновую картину!
Начинаем медленно сходить с ума. Ведь мы ожидали, что будет 2 вертикальные полоски напротив щелей! Получается, что когда мы бросали фотоны по одному, каждый из них проходил, как бы через 2 щели одновременно и интерферировал сам с собой. Фантастика! Вернёмся к пояснению этого феномена в следующем разделе.
Что такое спин и суперпозиция?
Мы теперь знаем, что такое интерференция. Это волновое поведение микро частиц – фотонов, электронов, других микро частиц (давайте для простоты с этого момента называть их фотонами).
В результате эксперимента, когда мы бросали в 2 щели по 1 фотону, мы поняли, что он пролетает как будто через две щели одновременно. Иначе как объяснить интерференционную картину на экране?
Но как представить картину, что фотон пролетает сквозь две щели одновременно? Есть 2 варианта.
В принципе, эти утверждения равносильны. Мы пришли к «интегралу по траекториям». Это формулировка квантовой механики от Ричарда Фейнмана.
Кстати, именно Ричарду Фейнману принадлежит известное выражение, что уверенно можно утверждать, что квантовую механику не понимает никто
Но это его выражение работало в начале века. Но мы то теперь умные и знаем, что фотон может вести себя и как частица, и как волна. Что он может каким-то непонятным для нас способом пролетать одновременно через 2 щели. Поэтому нам легко будет понять следующее важное утверждение квантовой механики:
Строго говоря, квантовая механика говорит нам, что такое поведение фотона – правило, а не исключение. Любая квантовая частица находится, как правило, в нескольких состояниях или в нескольких точках пространства одновременно.
Объекты макромира могут находится только в одном определенном месте и в одном определенном состоянии. Но квантовая частица существует по своим законам. И ей и дела нет до того, что мы их не понимаем. На этом — точка.
Нам остаётся просто признать, как аксиому, что «суперпозиция» квантового объекта означает то, что он может находится на 2-х или более траекториях одновременно, в 2-х или более точках одновременно
То же относится и к другому параметру фотона – спину (его собственному угловому моменту). Спин — это вектор. Квантовый объект можно представить как микроскопический магнитик. Мы привыкли, что вектор магнита (спин) либо направлен вверх, либо вниз. Но электрон или фотон опять говорят нам: «Ребята, нам плевать, к чему Вы привыкли, мы можем быть в обоих состояниях спина сразу (вектор вверх, вектор вниз), точно так же, как мы можем находиться на 2-х траекториях одновременно или в 2-х точках одновременно!».
Что такое «измерение» или «коллапс волновой функции»?
Нам осталось немного — понять ещё, что такое «измерение» и что такое «коллапс волновой функции».
Волновая функция — это описание состояния квантового объекта (нашего фотона или электрона).
Предположим, у нас есть электрон, он летит себе в неопределённом состоянии, спин его направлен и вверх, и вниз одновременно. Нам надо измерить его состояние.
Стоп! Вот тут у Вас неизбежно возникнет вопрос: до измерения ведь у электрона не было какого-то конкретного направления спина, так? Он ведь был во всех состояниях одновременно?
В этом-то и заключается фишка и сенсация квантовой механики. Пока Вы не измеряете состояние квантового объекта, он может вращаться в любую сторону (иметь любое направление вектора собственного углового момента – спина). Но в момент, когда Вы измерили его состояние, он как будто принимает решение, какой вектор спина ему принять.
Вот такой крутой этот квантовый объект – сам принимает решение о своём состоянии. И мы не можем заранее предсказать, какое решение он примет, когда влетит в магнитное поле, в котором мы его измеряем. Вероятность того, что он решит иметь вектор спина «вверх» или «вниз» – 50 на 50%. Но как только он решил – он находится в определённом состоянии с конкретным направлением спина. Причиной его решения является наше «измерение»!
Это и называется «коллапсом волновой функции». Волновая функция до измерения была неопределённой, т.е. вектор спина электрона находился одновременно во всех направлениях, после измерения электрон зафиксировал определённое направление вектора своего спина.
Внимание! Отличный для понимания пример-ассоциация из нашего макромира:
Раскрутите на столе монетку, как юлу. Пока монетка крутиться, у нёё нет конкретного значения — орёл или решка. Но как только Вы решите «измерить» это значение и прихлопните монету рукой, вот тут-то и получите конкретное состояние монеты – орёл или решка. А теперь представьте, что это монета принимает решение, какое значение Вам «показать» – орёл или решка. Примерно также ведёт себя и электрон.
А теперь вспомните эксперимент, показанный в конце мультика. Когда фотоны пропускали через щели, они вели себя, как волна и показывали на экране интерференционную картину. А когда учёные захотели зафиксировать (измерить) момент пролёта фотонов через щель и поставили за экраном «наблюдателя», фотоны стали вести себя, не как волны, а как частицы. И «нарисовали» на экране 2 вертикальные полосы. Т.е. в момент измерения или наблюдения квантовые объекты сами выбирают, в каком состоянии им быть.
Фантастика! Не правда ли?
Но это ещё не всё. Наконец-то мы добрались до самого интересного.
Но… мне кажется, что получится перегруз информации, поэтому 2 эти понятия мы рассмотрим в отдельных постах:
А сейчас, хотите, чтобы информация разложилась по полочкам? Посмотрите документальный фильм, подготовленный Канадским институтом теоретической физики. В нём за 20 минут очень кратко и в хронологическом порядке Вам поведают о всех открытиях квантовой физики, начиная с открытия Планка в 1900 году. А затем расскажут, какие практические разработки выполняются сейчас на базе знаний по квантовой физике: от точнейших атомных часов до суперскоростных вычислений квантового компьютера. Очень рекомендую посмотреть этот фильм.
Желаю всем вдохновения для всех задуманных планов и проектов!
Квантовая физика для чайников что это
Войти
Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal
Основы квантовой физики в пяти экспериментах для «чайников».
Никто в этом мире не понимает, что такое квантовая механика. Это, пожалуй, самое главное, что нужно знать о ней. Конечно, многие физики научились использовать законы и даже предсказывать явления, основанные на квантовых вычислениях. Но до сих пор неясно, почему наблюдатель эксперимента определяет поведение системы и заставляет ее принять одно из двух состояний.
Перед вами несколько примеров экспериментов с результатами, которые неизбежно будут меняться под влиянием наблюдателя. Они показывают, что квантовая механика практически имеет дело с вмешательством сознательной мысли в материальную реальность.
Сегодня существует множество интерпретаций квантовой механики, но Копенгагенская интерпретация, пожалуй, является самой известной. В 1920-х ее общие постулаты были сформулированы Нильсом Бором и Вернером Гейзенбергом.
В основу Копенгагенской интерпретации легла волновая функция. Это математическая функция, содержащая информацию о всех возможных состояниях квантовой системы, в которых она существует одновременно. Как утверждает Копенгагенская интерпретация, состояние системы и ее положение относительно других состояний может быть определено только путем наблюдения (волновая функция используется только для того, чтобы математически рассчитать вероятность нахождения системы в одном или другом состоянии).
Можно сказать, что после наблюдения квантовая система становится классической и немедленно прекращает свое существование в других состояниях, кроме того, в котором была замечена. Такой вывод нашел своих противников (вспомните знаменитое эйнштейновское «Бог не играет в кости»), но точность расчетов и предсказаний все же возымели свое.
Тем не менее число сторонников Копенгагенской интерпретации снижается, и главной причиной этого является таинственный мгновенный коллапс волновой функции в ходе эксперимента. Знаменитый мысленный эксперимент Эрвина Шредингера с бедным котиком должен продемонстрировать абсурдность этого явления. Давайте вспомним детали.
Очевидно, что для внешнего наблюдателя кот внутри коробки находится в двух состояниях: он либо жив, если все пошло хорошо, либо мертв, если распад произошел и флакон разбился. Оба этих состояния описываются волновой функцией кота, которая меняется с течением времени.
Чем больше времени прошло, тем больше вероятность того, что радиоактивный распад случился. Но как только мы открываем коробку, волновая функция коллапсирует, и мы сразу же видим результаты этого бесчеловечного эксперимента.
На самом деле, пока наблюдатель не откроет коробку, кот будет бесконечно балансировать между жизнью и смертью, или будет одновременно жив и мертв. Его судьба может быть определена только в результате действий наблюдателя. На этот абсурд и указал Шредингер.
1. Дифракция электронов
Согласно опросу знаменитых физиков, проведенному The New York Times, эксперимент с дифракцией электронов является одним из самых удивительных исследований в истории науки. Какова его природа? Существует источник, который излучает пучок электронов на светочувствительный экран. И есть препятствие на пути этих электронов, медная пластина с двумя щелями.
Какую картинку можно ожидать на экране, если электроны обычно представляются нам небольшими заряженными шариками? Две полосы напротив прорезей в медной пластине. Но на самом деле на экране появляется куда более сложный узор из чередующихся белых и черных полос. Это связано с тем, что при прохождении через щель электроны начинают вести себя не только как частицы, но и как волны (так же ведут себя фотоны или другие легкие частицы, которые могут быть волной в то же время).
Эти волны взаимодействуют в пространстве, сталкиваясь и усиливая друг друга, и в результате сложный рисунок из чередующихся светлых и темных полос отображается на экране. В то же время результат этого эксперимента не изменяется, даже если электроны проходят один за одним — даже одна частица может быть волной и проходить одновременно через две щели. Этот постулат был одним из основных в Копенгагенской интерпретации квантовой механики, когда частицы могут одновременно демонстрировать свои «обычные» физические свойства и экзотические свойства как волна.
Но как насчет наблюдателя? Именно он делает эту запутанную историю еще более запутанной. Когда физики во время подобных экспериментов попытались определить с помощью инструментов, через какую щель фактически проходит электрон, картинка на экране резко изменилась и стала «классической»: с двумя освещенными секциями строго напротив щелей, безо всяких чередующихся полос.
Электроны, казалось, не хотят открывать свою волновую природу бдительному оку наблюдателей. Похоже на тайну, покрытую мраком. Но есть и более просто объяснение: наблюдение за системой не может осуществляться без физического влияния на нее. Это мы обсудим позже.
2. Подогретые фуллерены
Эксперименты по дифракции частиц проводились не только с электронами, но и другими, гораздо более крупными объектами. Например, использовались фуллерены, большие и закрытые молекулы, состоящие из нескольких десятков атомов углерода. Недавно группа ученых из Венского университета под руководством профессора Цайлингера пыталась включить элемент наблюдения в эти эксперименты. Чтобы сделать это, они облучали движущиеся молекулы фуллеренов лазерными лучами. Затем, нагретые внешним источником, молекулы начинали светиться и неизбежно отображать свое присутствие для наблюдателя.
Вместе с этим нововведением изменилось и поведение молекул. До начала такого всеобъемлющего наблюдения фуллерены довольно успешно избегали препятствия (проявляя волновые свойства), аналогично предыдущему примеру с электронами, попадающими на экран. Но с присутствием наблюдателя фуллерены стали вести себя как совершенно законопослушные физические частицы.
3. Охлаждающее измерение
Одним из самых известных законов в мире квантовой физики является принцип неопределенности Гейзенберга, согласно которому невозможно определить скорость и положение квантового объекта одновременно. Чем точнее мы измеряем импульс частицы, тем менее точно мы можем измерить ее позицию. Однако в нашем макроскопическом реальном мире обоснованность квантовых законов, действующих на крошечные частицы, обычно остается незамеченной.
Недавние эксперименты профессора Шваба из США вносят весьма ценный вклад в эту область. Квантовые эффекты в этих экспериментах были продемонстрированы не на уровне электронов или молекул фуллеренов (примерный диаметр которых составляет 1 нм), а на более крупных объектах, крошечной алюминиевой ленте. Эта лента была зафиксирована с обеих сторон так, чтобы ее середина находилась в подвешенном состоянии и могла вибрировать под внешним воздействием. Кроме того, рядом было помещено устройство, способное точно записывать положение ленты. В результате эксперимента обнаружилось несколько интересных вещей. Во-первых, любое измерение, связанное с положением объекта, и наблюдение за лентой влияло на нее, после каждого измерения положение ленты изменялось.
Экспериментаторы определили координаты ленты с высокой точностью, и таким образом, в соответствии с принципом Гейзенберга, изменили ее скорость, а значит и последующее положение. Во-вторых, что было довольно неожиданным, некоторые измерения привели к охлаждению ленты. Таким образом, наблюдатель может изменить физические характеристики объектов одним своим присутствием.
4. Замерзающие частицы
Как известно, нестабильные радиоактивные частицы распадаются не только в экспериментах с котами, но и сами по себе. Каждая частица имеет средний срок жизни, который, как выясняется, может увеличиться под бдительным оком наблюдателя. Этот квантовый эффект был предсказан еще в 60-х годах, а его блестящее экспериментальное доказательство появилось в статье, опубликованной группой под руководством нобелевского лауреата по физике Вольфганга Кеттерле из Массачусетского технологического института.
В этой работе изучался распад нестабильных возбужденных атомов рубидия. Сразу после подготовки системы атомы возбуждались с помощью лазерного луча. Наблюдение проходило в двух режимах: непрерывном (система постоянно подвергалась небольшим световым импульсам) и импульсном (система время от времени облучалась более мощными импульсами).
Полученные результаты полностью соответствовали теоретическим предсказаниям. Внешние световые эффекты замедляют распад частиц, возвращая их в исходное состояние, которое далеко от состояния распада. Величина этого эффекта также совпадала с прогнозами. Максимальный срок существования нестабильных возбужденных атомов рубидия увеличивался в 30 раз.
5. Квантовая механика и сознание
Электроны и фуллерены перестают показывать свои волновые свойства, алюминиевые пластинки остывают, а нестабильные частицы замедляют свой распад. Бдительное око наблюдателя буквально меняет мир. Почему это не может быть доказательством причастности наших умов к работе мира? Возможно, Карл Юнг и Вольфганг Паули (австрийский физик, лауреат Нобелевской премии, пионер квантовой механики) были правы, в конце концов, когда заявили, что законы физики и сознания следует рассматривать как дополняющие одно другое?
Мы находимся в одном шаге от признания того, что мир вокруг нас — просто иллюзорный продукт нашего разума. Идея страшная и заманчивая. Давайте попробуем снова обратиться к физикам. Особенно в последние годы, когда все меньше и меньше людей верят Копенгагенской интерпретации квантовой механики с ее загадочными коллапсами волновой функции, обращаясь к более приземленной и надежной декогеренции.
Дело в том, что во всех этих экспериментах с наблюдениями экспериментаторы неизбежно влияли на систему. Они зажигали ее с помощью лазера и устанавливали измерительные приборы. Их объединял важный принцип: вы не можете наблюдать за системой или измерять ее свойства, не взаимодействуя с ней. Любое взаимодействие есть процесс модификации свойств. Особенно когда крошечная квантовая система подвергается воздействию колоссальных квантовых объектов. Некий вечно нейтральный буддист-наблюдатель невозможен в принципе. И здесь в игру вступает термин «декогеренция», который является необратимым с точки зрения термодинамики: квантовые свойства системы меняются при взаимодействии с другой крупной системой.
Во время этого взаимодействия квантовая система теряет свои первоначальные свойства и становится классической, словно «подчиняясь» крупной системе. Это объясняет и парадокс кота Шредингера: кот — это слишком большая система, поэтому ее нельзя изолировать от остального мира. Сама конструкция этого мысленного эксперимента не совсем корректна.
В любом случае, если допустить реальность акта творения сознанием, декогеренция представляется гораздо более удобным подходом. Возможно, даже слишком удобным. При таком подходе весь классический мир становится одним большим следствием декогеренции. И как заявил автор одной из самых известных книг в этой области, такой подход логически приводит к заявлениям типа «в мире нет частиц» или «нет времени на фундаментальном уровне».
В чем правда: в создателе-наблюдателе или мощной декогеренции? Нам нужно выбрать между двух зол. Тем не менее ученые все больше убеждаются в том, что квантовые эффекты — проявление наших психических процессов. И то, где заканчивается наблюдение и начинается реальность, зависит от каждого из нас.
Квантовая физика для начинающих
Квантовая физика является молодой наукой, что не мешает появлению в ней фантастических гипотез. Перспективы квантовой физики способны поразить любое сознание. Вот лишь несколько примеров: появление квантовой криптографии, основанной на передаче информации отдельными фотонами, и развитие квантового компьютера, который использует квантовую суперпозицию и квантовую запутанность для работы с информацией.
Хотите понять квантовую физику? Не пытайтесь ассоциировать эту науку с классической физикой. Тогда вы сможете взглянуть на мир иначе.
Квантовая гипотеза Планка
Днём рождения квантовой физики считается 14 декабря 1900 года, когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым им излучением. Он гласил: энергия электромагнитной волны может излучаться и поглощаться исключительно целыми порциями — квантами. Формула энергии кванта:
где e — энергия излучения, n — частота излучения, h — постоянная Планка.
Это предположение показывало, что законы классической физики неприменимы к микромиру.
Эйнштейн и фотоэлектрический эффект
В 1905 году Альберт Эйнштейн объяснил фотоэффект, опираясь на квантовую гипотезу Планка.
Фотоэлектрический эффект — явление вылета электрона из твёрдых и жидких тел под воздействием электромагнитного излучения.
Учёный предположил, что электромагнитная волна (которой считался свет) состоит из световых квантов (фотонов). Поглощение света происходит так, что фотоны квантами передают собственную энергию электронам вещества. При фотоэффекте часть электромагнитного излучения отражается от поверхности металла, а другая попадает внутрь и там поглощается. Электрон получает энергию от фотона и совершает работу выхода из вещества, приобретая начальную скорость.
где h — постоянная Планка, n — частота электромагнитного излучения, A — работа выхода, mv^2/2— кинетическая энергия вышедшего электрона.
Это уравнение объясняет все законы внешнего фотоэлектрического эффекта:
Благодаря явлению внешнего фотоэффекта мы смотрим фильмы со звуком. Фотоэлемент позволял превратить звук, запечатлённый на киноплёнке, в слышимый. Свет обычной лампы проходил через звуковую дорожку киноплёнки, преобразовывался и попадал на фотоэлемент. Чем больше света проходило через дорожку, тем громче был звук в динамике.
Не начинайте изучение квантовой физики со сложных математических формул. Улавливайте суть законов и экспериментов.
Формирование квантовой механики
Матричная механика Гейзенберга
В 1925 году Вернер Гейзенберг сформулировал теорию квантовой механики.
Квантовая механика — раздел квантовой физики, описывающий свойства и строение субатомных частиц и их систем.
Метод Гейзенберга требовал работы с матрицами (математическая таблица, представляющая набор упорядоченных чисел). Отсюда название — матричная механика. Теория объясняла, как происходят квантовые скачки.
Квантовый скачок — переход квантовой системы (в частности атома) с одного энергетического уровня на другой.
Подход Гейзенберга включал два компонента:
Замысел матричной механики заключался в том, что физические величины, характеризующие частицу, описываются матрицами, изменяющимися во времени.
Волновая механика Шрёдингера
Совершенно другой подход предложил Эрвин Шрёдингер, назвав теорию волновой механикой. Он предположил, что любая материя существует в виде волн.
Волновое уравнение, сформулированное Шрёдингером, относится к ненаблюдаемой величине. Квадрат модуля этой величины показывает распределение вероятности обнаружить частицу в различных точках пространства, то есть отдельная частица представляется как волна, распределённая по всему пространству. Из его метода описание материи стало статистическим, то есть вероятностным.
Позже Поль Дирак доказал, что теории двух учёных были разными представлениями одного и того же и равноценными. Эти два подхода сформировали квантовую механику.
Однако Гейзенберг и Шрёдингер известны другими открытиями.
Помните: в квантовой физике и её разделах всё неопределённо и вероятностно.
Основные законы квантовой механики
Принцип неопределённости Гейзенберга — где и с какой скоростью?
В 1927 году Гейзенберг сформулировал принцип неопределённости: невозможно одновременно точно измерить пространственную координату и скорость частицы. Формула:
где Δx— неопределённость координаты пространства, Δv — неопределённость скорости частицы, h — Постоянная Планка, m — масса частицы.
Принцип неопределённости также связывает иные пары характеристик, например, энергию квантовой системы и момент времени, когда квантовая система обладает ей.
Подходящей аналогией является фотографирование движущегося объекта. Объект, сфотографированный с длительной экспозицией, размывается. Это демонстрирует, как движется объект, но не где он находится. Наоборот: можно определить местоположение объекта, сфотографированного с короткой экспозицией, но не то, как он движется. Однако следует понимать, что принцип неопределённости не ориентирован на наблюдателя, а показывает природу частиц.
Кот Шрёдингера — и жив и мёртв одновременно
Шрёдингер, желая показать неполноту квантовой механики при переходе от микромира к макромиру, провёл мысленный эксперимент.
Кот Шрёдингера — и жив и мёртв одновременно
Статья дает научный ответ на вопрос, безгранична ли Вселенная и как это доказать.
Интерпретации квантовой механики
У квантовой механики существуют две интерпретации:
Различность этих подходов демонстрирует квантовое бессмертие, которое можно считать пересказом эксперимента Шрёдингера от лица кота. Вместо кота — участник, вместо колбы с ядом — ружьё, которое стреляет, если радиоактивный распад произойдёт (вероятность по-прежнему 50/50).
Квантовая физика — FAQ
Это были основы квантовой физики, которые необходимо знать для базового понимания. Однако осталось несколько интересных вопросов:
Квант — наименьшая неделимая порция чего-либо, в частности энергии. Понятие кванта ввёл Макс Планк.
Квантовый компьютер — вычислительное устройство, использующее явления квантовой суперпозиции и квантовой запутанности для передачи и обработки информации. И он существует. Наибольший составлен из семи кубитов. Этого хватит, чтобы разложить число 14 на простые множители: 7 и 2. Пока что нет квантового компьютера для практического применения, однако его появление поможет человечеству решить медицинские проблемы, расшифровать генетический код и выйти за рамки материального мира. Поэтому многие страны финансируют десятки миллионов долларов на создание квантового компьютера.
Пока что о квантовой криптографии говорят в будущем времени. Однако первый протокол был создан в 1984 году и носил название BB84. Замысел квантового шифрования состоит в том, чтобы передавать информацию отдельными фотонами. Главным теоретическим недостатком квантового шифрования является низкая пропускная способность.
Если выбрать одну частицу из определённого количества частиц и повлиять на неё, то состояние изменится у остальных частиц, независимо от условий. Явление квантовой запутанности — основа квантовой телепортации.
Свойство некоторых металлов при охлаждении до абсолютного нуля полностью терять сопротивление электрическому току.
Свет не является ни частицей, ни волной, приобретая их свойства только в некотором приближении.
Квантовый двигатель — механизм, который выполняет работу без потерь энергии, сил трения и теплообмена с окружающей средой.
Эффект наблюдателя — теория о том, что наблюдение за объектом изменяет его свойства.
В квантовых полях процесс передачи взаимодействия происходит квантами, в качестве которых выступают элементарные частицы с фиксированными физическими характеристиками. Таким образом, взаимодействующие частицы имеют квантованные характеристики и взаимодействие между ними передаётся квантовым полем со своими квантованными характеристиками.
Квантовый камуфляж сделан из оксида самария и никеля и позволяет спрятаться от инфракрасных камер.
Книги о квантовой физике
Если вы хотите и дальше познавать квантовый мир, рекомендуем следующие книги: