Радикалы что это математика
Радикал, в математике
Полезное
Смотреть что такое «Радикал, в математике» в других словарях:
РАДИКАЛ (в математике) — РАДИКАЛ, математический знак (измененное латинское r), которым обозначают действие извлечения корня, а также результат извлечения корня, т. е. число вида … Энциклопедический словарь
Радикал в математике — Один из корней двучленного уравнения xn = а называется радикалом и обозначается Здесь а называется подкоренным числом, n показателем корня. Р. называется иногда корнем. В начальной алгебре подкоренное число предполагается положительным и под Р.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
РАДИКАЛ — (лат., radix, radicis корень). 1) Политик, стремящийся к коренным преобразованиям в управлении страны. 2) английские социалисты носят также название радикалов. 3) В органической химии сложные вещества, способные соединяться с другими веществами… … Словарь иностранных слов русского языка
радикал — РАДИКАЛ, а, муж. 1. Сторонник радикализма (в 1 знач.), член радикальной партии. 2. Приверженец крайних, решительных действий, взглядов. | прил. радикалистский, ая, ое. II. РАДИКАЛ, а, муж. 1. В математике: знак, (Ц) обозначающий извлечение корня… … Толковый словарь Ожегова
РАДИКАЛ — (от лат. radicalis коренной) многозначный термин, используемый в разных науках (напр., в химии и математике) и практиках. 1, Сторонник радикальных (крайних, решительных) взглядов и действий, партий, движений. Бескомпромиссный человек. Склонность… … Большая психологическая энциклопедия
Радикал — В Викисловаре есть статья «радикал» Радикал (буквально: «коренной» от лат. radix … Википедия
РАДИКАЛ — Основное значение имеющий отношение к корню. Таким образом: 1. В математике знак (V), выражающий операцию разложения числа, стоящего под ним, на его корни. 2. В социальных/политических терминах описание любой точки зрения или предложения, в… … Толковый словарь по психологии
Центр (в математике) — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Вербицкий, Михаил Сергеевич — В Википедии есть статьи о других людях с такой фамилией, см. Вербицкий. Михаил Вербицкий … Википедия
Абель Нильс Хенрик — (Abel) (1802 1829), норвежский математик. Доказал, что алгебраические уравнения степени выше 4 й в общем случае неразрешимы в радикалах. Изучал интегралы от алгебраических функций (абелевы интегралы). Один из создателей теории эллиптических… … Энциклопедический словарь
Что такое квадратный корень
Что такое квадратный корень
Определение арифметического квадратного корня ясности не добавляет, но заучить его стоит:
Арифметическим квадратным корнем из неотрицательного числа a называется такое неотрицательное число, квадрат которого равен a.
Определение квадратного корня также можно представить в виде формул:
√a = x
x 2 = a
x ≥ 0
a ≥ 0
Из определения следует, что a не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.
Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.
Попробуем найти корень из √-16
Здесь логично предположить, что 4, но давайте проверим: 4*4 = 16 — не сходится.
Получается, что ни одно число не может дать отрицательный результат при возведении его в квадрат.
Числа, стоящие под знаком корня, должны быть положительными.
Исходя из определения, значение корня также не должно быть отрицательным.
Разница между квадратным корнем и арифметическим квадратным уравнением
Прежде всего, чтобы разграничить эти два понятия, запомните:
Это два нетождественных друг другу выражения.
Из выражения x 2 = 16 следует, что:
Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.
В то же самое время, из выражения x = √16 следует, что x = 4.
Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:
Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.
Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.
Даны два выражения:
Первое выражение — квадратное уравнение.
Второе выражение — арифметический квадратный корень.
Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.
Запись иррациональных чисел с помощью квадратного корня
Иррациональное число — это число, которое нельзя представить в виде обыкновенной дроби.
Чаще всего, иррациональные числа можно встретить в виде корней, логарифмов, степеней и т.д.
Примеры иррациональных чисел:
Чтобы упростить запись иррациональных чисел, математики ввели понятие квадратного корня. Давайте разберем пару примеров, чтобы увидеть квадратный корень в деле.
Дано уравнение: x 2 = 2.
Сразу сталкиваемся с проблемой, поскольку очевидно, что ни одно целое число не подходит.
Переберем числа, чтобы удостовериться в этом:
1 * 1 = 1,
2 * 2 = 4,
3 * 3 = 9.
Отрицательные числа дают такой же результат. Значит результатом решения не могут быть целые числа.
Извлечение корней
Решать примеры с квадратными корнями намного легче, если запомнить как можно больше квадратов чисел. Для этого воспользуйтесь таблицей — сохраните ее себе и используйте для решения задачек.
Таблица квадратов
Вот несколько примеров извлечения корней, чтобы научиться пользоваться таблицей:
Ищем в таблице число 289, двигаемся от него влево и вверх, чтобы определить цифры, образующие нужное нам число.
Ищем в таблице число 3025.
Влево — 5, вверх — 5.
Ищем в таблице число 7396.
Ищем в таблице число 9025.
Ищем в таблице число 1600.
Извлечением корня называется нахождение его значение.
Свойства арифметического квадратного корня
У арифметического квадратного корня есть 3 свойства — их нужно запомнить, чтобы проще решать примеры.
Давайте потренируемся и порешаем примеры на все три операции с корнями. Не забывайте обращаться к таблице квадратов. Попробуйте решить примеры самостоятельно, а для проверки обращайтесь к ответам.
Умножение арифметических корней
Для умножения арифметических корней используйте формулу:
Примеры:
Внимательно посмотрите на второе выражение и запомните, как записываются такие примеры.
Если нет возможности извлечь корни из чисел, то поступаем так:
Деление арифметических корней
Для деления арифметических корней используйте формулу:
Примеры:
Выполняя деление, не забывайте сокращать множители. При делении арифметических корней, используйте правила преобразования обыкновенных дробей.
Возведение арифметических корней в степень
Для возведения арифметического корня в степень используйте формулу:
Примеры:
Эти две формулы нужно запомнить:
Повторите свойства степеней или запишитесь на курсы по математике, чтобы без труда решать такие примеры.
Внесение множителя под знак корня
Вы уже умеете по-всякому крутить и вертеть квадратными корнями: умножать, делить, возводить в степень. Богатый арсенал, не правда ли? Осталось овладеть еще парой приемов и можно без страха браться за любую задачку.
А теперь давайте разберемся, как вносить множитель под знак корня.
Число семь умножено на квадратный корень из числа девять.
Извлечем квадратный корень и умножим его на 7.
В данном выражение число 7 — множитель. Давайте внесем его под знак корня.
Запомните, что вносить множитель под знак корня обязательно нужно так, чтобы значение исходного выражения осталось неизменным. Иными словами, после наших манипуляций с корнем, значение выражения должно по-прежнему оставаться 21.
Вы помните, что (√a) 2 = a
Тогда число 7 должно быть возведено во вторую степень. В этом случае значение выражения останется тем же.
7√9 = √7 2 * 9 = √49 * 9 = √49 * √9 = 7 * 3 = 21.
Формула внесения множителя под знак корня:
Потренируемся вносить множители. Попробуйте решить примеры самостоятельно, сверяясь с ответами.
Вынесение множителя из-под знака корня
С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.
Дано выражение в виде квадратного корня из произведения.
Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.
Извлекаем корень из всех имеющихся множителей.
В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:
Таким образом множитель выносится из-под знака корня.
Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.
Раскладываем подкоренное выражение на множители 28 = 7*4.
Сравнение квадратных корней
Мы почти досконально разобрали арифметический квадратный корень, научились умножать, делить и возводить его в степень. Теперь вы без труда можете вносить множители под знак корня и выносить их оттуда. Осталось научиться сравнивать корни и стать непобедимым теоретиком.
Итак, чтобы понять, как сравнить два квадратных корня, нужно запомнить пару правил.
Если:
Потренируйтесь в сравнении корней. Сверяете свои результаты с ответами.
Ответ: преобразовываем выражение 9√5.
9√5 = √81 * √5 = √81*5 = √405
Ответ: преобразовываем выражение 7√12.
7√12 = √49 * √12 = √49*12 = √588
Это значит, что 7√12 > √20.
Как видите, ничего сложного в сравнении арифметических квадратных корней нет.
Самое главное — выучить формулы и сверяться с таблицей квадратов, если значения корня слишком большие для легкого вычисления в уме.
Не бойтесь пользоваться вспомогательными материалами. Математика просто создана для того, чтобы окружить себя подсказками и намеками.
Когда вы почувствуете, что уже достаточно натренировались в решении примеров с квадратными корнями, можете позволить себе время от времени прибегать к помощи онлайн-калькуляторов. Они помогут решать примеры быстрее и быть эффективнее.
Таких калькуляторов в интернете много, вот один из них.
Извлечение квадратного корня из большого числа
Вы уже наверняка познакомились и подружились с таблицей квадратов. Она — ваша правая рука. С ее помощью вы реактивно решаете примеры и, возможно, даже подумываете запомнить ее наизусть.
Но, как вы можете заметить, таблица заканчивается на числе 9801. А это, согласитесь, не самое крупное число из тех, что могут вам попасться в примере.
Чтобы извлечь корень из большого числа, которое отсутствует в таблице квадратов, нужно:
Извлечь корень из большого числа можно разными способами — вот один из них.
Извлечем корень из √2116.
Наша задача в том, чтобы определить между какими десятками стоит число 2116.
Мы видим что, 2116 больше 1600, но меньше 2500.
41, 42, 43, 44, 45, 46, 47, 48, 49.
Запомните лайфхак по вычислению всего на свете, что нужно возвести в квадрат.
Не секрет, что на последнем месте в любом числе может стоять только одна цифра от 1 до 0.
Как пользоваться таблицей
4 2 = 16 ⇒ 6
5 2 = 25 ⇒ 5
6 2 = 36 ⇒ 6
7 2 = 49 ⇒ 9
8 2 = 64 ⇒ 4
9 2 = 81 ⇒ 1
Мы знаем, что число 41, возведенное в квадрат, даст число, на конце которого — цифра 1.
Число, 42, возведенное в квадрат, даст число, на конце которого — цифра 4.
Число 43, возведенное в квадрат, даст число, на конце которого — 9.
Такая закономерность позволяет нам без записи «перебрать» все возможные варианты, исключая те, которые не дают нужную нам цифру 6 на конце.
Далее вычисляем: 44 * 44 = 1936.
Если такой способ показался не до конца понятным — можно потратить чуть больше времени и разложить число на множители. Если решить все правильно, получим такой же результат.
Еще пример. Извлечем корень из числа √11664
Разложим число 11664 на множители:
Запишем выражение в следующем виде:
Извлечь квадратный корень из большого числа гораздо проще с помощью калькулятора. Но знать парочку таких способов «на экстренный случай» точно не повредит. Например, для контрольной или ЕГЭ.
Чтобы закрепить все теоретические знания, давайте ещё немного поупражняемся в решении примеров на арифметические квадратные корни.
109004, Москва, ул. Александра Солженицына, 23а, строение 1, подъезд 10
РАДИКАЛ (в математике)
Смотреть что такое «РАДИКАЛ (в математике)» в других словарях:
Радикал в математике — Один из корней двучленного уравнения xn = а называется радикалом и обозначается Здесь а называется подкоренным числом, n показателем корня. Р. называется иногда корнем. В начальной алгебре подкоренное число предполагается положительным и под Р.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Радикал, в математике — Один из корней двучленного уравнения xn = а называется радикалом и обозначается Здесь а называется подкоренным числом, n показателем корня. Р. называется иногда корнем. В начальной алгебре подкоренное число предполагается положительным и под Р.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
РАДИКАЛ — (лат., radix, radicis корень). 1) Политик, стремящийся к коренным преобразованиям в управлении страны. 2) английские социалисты носят также название радикалов. 3) В органической химии сложные вещества, способные соединяться с другими веществами… … Словарь иностранных слов русского языка
радикал — РАДИКАЛ, а, муж. 1. Сторонник радикализма (в 1 знач.), член радикальной партии. 2. Приверженец крайних, решительных действий, взглядов. | прил. радикалистский, ая, ое. II. РАДИКАЛ, а, муж. 1. В математике: знак, (Ц) обозначающий извлечение корня… … Толковый словарь Ожегова
РАДИКАЛ — (от лат. radicalis коренной) многозначный термин, используемый в разных науках (напр., в химии и математике) и практиках. 1, Сторонник радикальных (крайних, решительных) взглядов и действий, партий, движений. Бескомпромиссный человек. Склонность… … Большая психологическая энциклопедия
Радикал — В Викисловаре есть статья «радикал» Радикал (буквально: «коренной» от лат. radix … Википедия
РАДИКАЛ — Основное значение имеющий отношение к корню. Таким образом: 1. В математике знак (V), выражающий операцию разложения числа, стоящего под ним, на его корни. 2. В социальных/политических терминах описание любой точки зрения или предложения, в… … Толковый словарь по психологии
Центр (в математике) — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Вербицкий, Михаил Сергеевич — В Википедии есть статьи о других людях с такой фамилией, см. Вербицкий. Михаил Вербицкий … Википедия
Абель Нильс Хенрик — (Abel) (1802 1829), норвежский математик. Доказал, что алгебраические уравнения степени выше 4 й в общем случае неразрешимы в радикалах. Изучал интегралы от алгебраических функций (абелевы интегралы). Один из создателей теории эллиптических… … Энциклопедический словарь
Радикал в математике
Здесь а называется подкоренным числом, n — показателем корня. Р. называется иногда корнем. В начальной алгебре подкоренное число предполагается положительным и под Р. подразумевается число положительное. Алгебраическое выражение, содержащее Р., может подвергаться преобразованиям при помощи формул:
a = r (cos φ + i sin φ), где r > 0.
Для n значений Р. получается выражение
где k = 0, 1, 2. n— 1. В правой части
Полезное
Смотреть что такое «Радикал в математике» в других словарях:
РАДИКАЛ (в математике) — РАДИКАЛ, математический знак (измененное латинское r), которым обозначают действие извлечения корня, а также результат извлечения корня, т. е. число вида … Энциклопедический словарь
Радикал, в математике — Один из корней двучленного уравнения xn = а называется радикалом и обозначается Здесь а называется подкоренным числом, n показателем корня. Р. называется иногда корнем. В начальной алгебре подкоренное число предполагается положительным и под Р.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
РАДИКАЛ — (лат., radix, radicis корень). 1) Политик, стремящийся к коренным преобразованиям в управлении страны. 2) английские социалисты носят также название радикалов. 3) В органической химии сложные вещества, способные соединяться с другими веществами… … Словарь иностранных слов русского языка
радикал — РАДИКАЛ, а, муж. 1. Сторонник радикализма (в 1 знач.), член радикальной партии. 2. Приверженец крайних, решительных действий, взглядов. | прил. радикалистский, ая, ое. II. РАДИКАЛ, а, муж. 1. В математике: знак, (Ц) обозначающий извлечение корня… … Толковый словарь Ожегова
РАДИКАЛ — (от лат. radicalis коренной) многозначный термин, используемый в разных науках (напр., в химии и математике) и практиках. 1, Сторонник радикальных (крайних, решительных) взглядов и действий, партий, движений. Бескомпромиссный человек. Склонность… … Большая психологическая энциклопедия
Радикал — В Викисловаре есть статья «радикал» Радикал (буквально: «коренной» от лат. radix … Википедия
РАДИКАЛ — Основное значение имеющий отношение к корню. Таким образом: 1. В математике знак (V), выражающий операцию разложения числа, стоящего под ним, на его корни. 2. В социальных/политических терминах описание любой точки зрения или предложения, в… … Толковый словарь по психологии
Центр (в математике) — Для общего описания теории групп см. Группа (математика) и Теория групп. Курсив обозначает ссылку на этот словарь. # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У … Википедия
Вербицкий, Михаил Сергеевич — В Википедии есть статьи о других людях с такой фамилией, см. Вербицкий. Михаил Вербицкий … Википедия
Абель Нильс Хенрик — (Abel) (1802 1829), норвежский математик. Доказал, что алгебраические уравнения степени выше 4 й в общем случае неразрешимы в радикалах. Изучал интегралы от алгебраических функций (абелевы интегралы). Один из создателей теории эллиптических… … Энциклопедический словарь
Математическая энциклопедия
РАДИКАЛЫ
Общая теория радикалов. Всюду в дальнейшем говорится только об алгебрах (имеются в виду алгебры над произвольным фиксированным ассоциативно-коммутативным кольцом с единицей); кольца являются частным случаем таких алгебр. Под идеалом алгебры, если это не оговорено специально, понимается двусторонний идеал.
(A) гомоморфный образ r-алгебры есть r-алгебра;
(Б) каждая алгебра Акласса обладает наибольшим r-идеалом, т. е. идеалом, содержащим любой r-идеал этой алгебры, и этот максимальный r-идеал наз. тогда r-радикалом этой алгебры и обозначается r(А).
Алгебра, совпадающая со своим Р., наз. радикальной. В любом классе алгебр и для любого радикала <0>является единственной одновременно радикальной и полупростой алгеброй. Подпрямое произведение любого множества полупростых алгебр само полупросто.
С каждым радикалом r связаны два подкласса алгебр в : класс
(r) всех r-радикальных алгебр и класс
(r) всех r-полупростых алгебр. По любому из этих классов однозначно находится радикал r(А).для каждой алгебры Аиз
, а именно:
Алгебра r-радикальна тогда и только тогда, когда она не может быть отображена гомоморфно ни на одну ненулевую r-полупростую алгебру.
Известны условия на подклассы алгебр, необходимые и достаточные для того, чтобы эти подклассы служили классами всех радикальных или классами всех полупростых алгебр для каких-либо Р. в . Такие подклассы алгебр принято называть соответственно радикальными и полупростыми подклассами.
Наследственные радикалы. Радикал r наз. идеальо наследственным радикалом, или кручением, в классе , если для всякого идеала I алгебры Аэтого класса:
Идеально наследственные Р. есть в точности те Р., для к-рых классы
(r). и
(r) замкнуты относительно идеалов. Радикал rназ. наследственным, если класс
(r) замкнут относительно идеалов. В классах ассоциативных, а также альтернативных алгебр каждый наследственный Р. является кручением. Радикал r наз. строго наследственным, если класс
(r) замкнут относительно подалгебр.
Класс всех кручений является полной дистрибутивной «решеткой» (см. Дистрибутивная решетка). Употребление кавычек здесь связано с тем, что совокупность элементов этой «решетки» является не множеством, а классом.
Лит.:[1] A m i t s u r S. A., «Amer. J. Math.», 1952, v. 74, p. 774-86: 1954, v. 76, p. 100-36; [2] К у р о ш А. Г.,»Матем. сб.», 1953, т. 33, в. 1, с. 13-26; [3] D i v i n s k у N.. Rings and radicals, Toronto, 1965;[4] A r t i n E., N e s b i t t С., Т h o r a l l R., Rings with minimum condition, Ann Arbor, 1944; [5] Итоги науки. Алгебра. Топология. Геометрия. 1967, М., 1969, с. 28-32; [6] Кольца, т. 2, Новосиб., 1973, с. 3-6; [7] А н д р у н а к и е в и ч В. А., Р я б у х и н Ю. М., Радикалы алгебр и структурная теория, М., 1979; [8] Ж е в л а к о в К. А., С л и н ь к о А. М., Ш е с т а к о в И. П., Ширшов А. И., Кольца, близкие к ассоциативным, М., 1978.
Лит.:[1] Джекобсон Н., Алгебры Ли, пер. с англ., М., 1964; [2] Теория алгебр Ли. Топология групп Ли. Семинар «Софус Ли», пер. с франц., М., 1962; [3] Ш е в а л л е К., Теория групп Ли, пер. с франц., т. 3, М., 1958. А. Л. Онищик.