Расходомер в чем измеряется
Расходомер
Расходомер — прибор, измеряющий расход вещества, проходящего через данное сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство со счетчиком и служит для одновременного измерения и количества вещества, то его называют расходомером со счетчиком.
Расходомеры бывают следующих типов.
Содержание
Механические счётчики расхода
Ёмкость и секундомер
Возможно, самый простой способ измерить расход — это использовать некоторую ёмкость и секундомер. Поток жидкости направляется в некоторую ёмкость, и по секундомеру засекается время заполнения этой ёмкости. Зная объём ёмкости, и поделив его на время её заполнения, можно узнать расход жидкости. Этот способ подразумевает прерывание нормального течения потока.
Ротаметры
Ролико-лопастные расходомеры
Шестерёнчатые расходомеры
Впервые расходомер с овальными шестернями был изобретен компанией Bopp & Reuther (Германия) в 1932 году. Измеряемый элемент состоит из двух шестеренок овальной формы. Протекающая жидкость вращает данные шестеренки. При каждом обороте пары овальных колес, через прибор проходит строго определенное количество жидкости. Считывая количество оборотов можно точно определить какой объем жидкости протекает через прибор. Данные расходомеры отличаются высокой точностью, надежностью и простотой, что позволяет их использовать для жидкостей с высокой температурой и под большим давлением. Отличительной особенность расходомеров с овальными шестернями является возможность использования для жидкостей с высокой вязкостью (мазут, битум и т.д.)
Расходомеры на базе объёмных гидромашин
В системах объёмного гидропривода для измерения объёмного расхода рабочей жидкости применяют объёмные гидромашины (как правило шестерённые или аксиально-плунжерные гидромашины).
Объёмная гидромашина в этом случае работает как гидродвигатель, но без нагрузки на валу. Тогда объёмный расход через гидромашину можно определить по формуле:
— объёмный расход,
— рабочий объём гидромашины (определяется по паспорту гидромашины),
— частота вращения выходного вала гидромащины, которую можно измерить тахометром.
Заметим, что объёмная гидромашина пропускает через себя весь расход жидкости, что для объёмного гидропривода не представляет сложности ввиду малых расходов.
Рычажно-маятниковые расходомеры
Датчики расхода измеряющие перепад давления
Вентури-метры
Принцип действия расходометров этого типа основан на эффекте Вентури. Вентури-расходомер сужает поток жидкости в некотором устройстве, и датчики давления измеряют разницу давлений перед указанным устройством и непосредственно в месте сужения. Этот метод измерения расхода широко используется при транспортировке газов по трубопроводам, и использовался ещё во времена Римской империи.
Дисковая диафрагма
Диафрагма представляет собой диск со сквозным отверстием, вставленный в поток. Дисковая диафрагма сужает поток, и разница давлений, измеряемая перед и после диафрагмы, позволяет определить расход в потоке. Этот тип расходомера можно грубо считать одной из форм Вентури-метров, однако имеющую более высокие потери энергии. Существует три типа дисковых диафрагм: концентрические, эксцентриковые и сегментальные. [1] [2]
Трубка Пито
Расходомеры на основе трубки Пито измеряют динамическое давление в застойной зоне потока (англ.).
С помощью уравнения Бернулли, и зная динамическое давление, можно определить скорость потока, а значит, и объёмный расход (Q=SV, где S — площадь поперечного сечения потока, V — средняя скорость потока).
Оптические расходомеры
Оптические расходомеры используют свет для определения расхода.
Расходомеры на основе двух лазерных лучей
Маленькие частички, которые неизбежно содержатся в природных и промышленных газах, проходят через два лазерных луча, направленных на поток от источника. Свет лазера рассеивается, когда частичка проходит через первый лазерный луч. Рассеяный лазерный луч поступает на фотодетектор, который в результате генерирует электрический импульсный сигнал. Если та же самая частица пересекает второй лазерный луч, то рассеяный лазерный свет поступает на второй фотодетектор, который генерирует второй импульсный электрический сигнал. Измеряя интервал времени между двумя этими импульсами, можно вычислить скорость газа по формуле V = D / T, где D — расстояние между двумя лазерными лучами, Т — время между двумя импульсами. Зная скорость потока, можно определить расход (Q = VS, где S — площадь поперечного сечения потока).
Основанные на лазерах расходометры измеряют скорость частиц — параметр, который не зависит от теплопроводности, вида газа или его состава. Лазерная технология позволяет получать очень точные данные, причём даже в тех случаях, когда другие методы применять не удаётся или они дают большу́ю погрешность: при высоких температурах, малых расходах, высоких давлениях, высокой влажности, вибрациях трубопроводов и акустическом шуме.
Оптические расходометры способны измерять скорости потока от значений 0.1 м/с до более чем 100 м/с.
Ультразвуковые расходомеры
Ультразвуковые время-импульсные
Ультразвуковые фазового сдвига
Ультразвуковые доплеровские
Ультразвуковые корреляционные
Электромагнитные расходомеры
Кориолисовые расходомеры
Вихревые расходомеры
Тепловые
Расходомеры теплового пограничного слоя
Калориметрические расходомеры
Меточные
Примечания
Полезное
Смотреть что такое «Расходомер» в других словарях:
расходомер — расходомер … Орфографический словарь-справочник
Расходомер — средство диагностирования, состоящее из одного датчика, предназначенное для измерения расхода жидкости в трубопроводе. Источник … Словарь-справочник терминов нормативно-технической документации
РАСХОДОМЕР — прибор для определения расхода газа, жидкости или сыпучих материалов. Различают расходомеры индукционные (измеряют электродвижущую силу, наводимую в потоке вещества магнитным полем), тепловые (учитывают интенсивность теплообмена в потоке) и др … Большой Энциклопедический словарь
Расходомер — (a. flowmeter; н. Verbrauchsmesser, Durchfluβmesser; ф. debitmetre, compteur de debit; и. caudalometro, contador de flujo, fluimetro, fluidуmetro, flujуmetro) устройство для измерения расходов однофазных потоков жидкости (нефти, газа,… … Геологическая энциклопедия
расходомер — сущ., кол во синонимов: 7 • водомер (2) • дебитомер (3) • массорасходомер (1) … Словарь синонимов
расходомер — Прибор для измерения расхода газов, жидкостей и сыпучих материалов [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики измерение расхода жидкости и газа EN consumption indicatordemand indicatorflow gageflow… … Справочник технического переводчика
Расходомер — – прибор для определения расхода газа, жидкости или сыпучих материалов. Различают расходомеры индукционные (измеряют электродвижущую силу, наводимую в потоке вещества магнитным полем), тепловые (учитывают интенсивность теплообмена в потоке) … Энциклопедия терминов, определений и пояснений строительных материалов
расходомер — прибор для определения расхода газа, жидкости или сыпучих материалов. Различают расходомеры индукционные (измеряют электродвижущую силу, наводимую в потоке вещества магнитным полем), тепловые (учитывают интенсивность теплообмена в потоке),… … Энциклопедия техники
расходомер — прибор для определения расхода газа, жидкости или сыпучих материалов. Различают расходомеры индукционные (измеряют эдс, наводимую в потоке вещества магнитным полем), вертушечные (измеряют расход вещества по частоте вращения крыльчатки, приводимой … Энциклопедический словарь
расходомер — ↑ величина потока расходомер прибор для измерения величины потока. газомер. реометр. водомер. дождемер. амперметр … Идеографический словарь русского языка
Типы существующих расходомеров: преимущества и недостатки
Расходомеры – это приборы, измеряющие объем или массу вещества: жидкости, газа или пара, которые проходят через сечение трубопровода в единицу времени. В быту расходомеры называют «счетчиками», но это неверно, потому что счетчик – только одна из составляющих конструкции расходомера. Особенности конструкции зависят от типа прибора. Сейчас используют 6 типов расходомеров, у каждого из которых – свои сильные и слабые стороны.
Электромагнитные расходомеры
В основе устройства электромагнитных расходомеров – закон электромагнитной индукции, известный как закон Фарадея. Когда проводящая жидкость, например вода, проходит через силовые линии магнитного поля, индуцируется электродвижущая сила. Она пропорциональна скорости движения проводника, а направление тока – перпендикулярно направлению движения проводника.
В электромагнитных расходомерах жидкость течет между полюсами магнита, создавая электродвижущую силу. Прибор измеряет напряжение между двумя электродами, рассчитывая тем самым объем проходящей через трубопровод жидкости. Это надежный и точный метод, потому что сам прибор не влияет на скорость течения жидкости, а за счет отсутствия движущихся частей оборудование долговечное.
Преимущества электромагнитных расходомеров:
Принцип работы электромагнитного расходомера
Ультразвуковые расходомеры
В конструкции расходомеров есть передатчик ультразвуковых сигналов (УЗС). Когда жидкость движется по трубопроводу, происходит снос ультразвуковой волны. Из-за этого меняется время, за которое сигнал от передатчика достигает приемника. Время прохождения увеличивается против потока жидкости и уменьшается, если ультразвуковой сигнал идет по направлению потока. Ультразвуковые расходомеры рассчитывают объемный расход жидкости на основе разности времени прохождения УЗС по течению потока и против него – эта разность пропорциональна скорости движения и объему воды.
Достоинства ультразвуковых расходомеров:
Расходомеры перепада давления
Принцип действия этого типа расходомеров основан на измерении перепадов давления, которые возникают, когда поток жидкости, газа или пара проходит через шайбу, сопло или другое сужающее устройство. Скорость потока в этом месте меняется, давление возрастает: чем выше скорость потока, тем больший расход.
Вихревые расходомеры
Вихревые расходомеры измеряют частоту колебаний, которые возникают в потоке жидкости или газа, когда они обтекают препятствия. При обтекании препятствий образуется вихрь, от которого приборы и получили свое название.
Принцип работы вихревого расходомера
Тахометрические расходомеры
Тахометрические расходомеры измеряют скорость вращения, количество оборотов крыльчатки или турбины в потоке воды, газа или пара. Принцип действия не меняется в зависимости от того, установлена ли в приборе крыльчатка или турбина; разница только в том, что ось вращения крыльчатки находится перпендикулярно движению потока, а турбины – параллельно потоку жидкости или газа.
Принцип работы тахометрического расходомера
Кориолисовы расходомеры
Принцип действия этих расходомеров опирается на эффект Кориолиса: изменение фаз механических колебаний U-образных трубок, по которым движется жидкость, газ или пар. Сдвиг фаз зависит от массового расхода. Сила Кориолиса, которая воздействует на стенки колеблющейся трубки, меняется под напором воды или пара.
Сравнив достоинства и недостатки разных видов оборудования, несложно понять, почему самыми востребованными остаются электромагнитные расходомеры: они недорогие, точные и практичные. Через каталог компании «Интелприбор» вы можете заказать измерительные модули высокого качества. Мы не только поможем выбрать оборудование, но также установим его и обеспечим техобслуживание.
Подпишитесь на нашу рассылку,
и станьте одним из первых,
кто будет в курсе всех
наших новостей!
Измерение расхода
Расход – это продукт или сырье проходящий через поперечное сечение трубопровода в единицу времени.
где α – расчетный коэффициент расхода;
К²t – температурный коэффициент (коэффициент расширения), эта величина выбирается из справочника;
ρ — плотность продукта или сырья;
d20 – диаметр сужающего устройства при температуре t = 20˚С;
∆Р – перепад давления на сужающем устройстве.
Из этих формул видно, что разница между объемным и массовым расходом заключается в подкоренном выражении, т.е. в одном случае под корнем перепад давления ∆Р делится на плотность ρ, а в другом случае эти две величины перемножаются.
Единицы измерения объемного расхода : м3/ч; м3/с.
Единицы измерения массового расхода : кг/ч; кг/с; т/ч; т/с.
При измерении расхода существует такое понятие, как »Количество вещества». Количество вещества – это продукт или сырье, проходящее через поперечное сечение трубопровода за промежуток времени (смену, вахту, час, месяц и т.д.).
Количество вещества измеряется счетчиками, которые устанавливаются:
1. По месту (в трубопроводе);
2. В операторной (вторичный прибор).
Количество вещества – выражают в единицах объема (м3) или массы (кг).
Существует несколько методов измерения расхода:
1. Расходомеры постоянного перепада давления.
2. Расходомеры переменного перепада давления.
3. Электромагнитные расходомеры.
4. Турбинные расходомеры.
5. Акустические расходомеры.
6. Приборы измеряющие расход по эффекту »Кориолисовых сил».
7. Тепловые расходомеры.
8. Вихревые расходомеры.
Метод постоянного перепада давления.
Ротаметр – расходомеры обтекания. Ротаметры устанавливают в вертикальный участок трубопровода. Он представляет собой стеклянную трубку в форме конуса, обращенную широким концом вверх, внутри которой находится поплавок. Наибольшее давление будет в кольцевом зазоре между поплавком и стенками сосуда, а наименьшее сверху.
а) нижнюю коническую часть;
б) среднюю цилиндрическую часть;
в) верхнюю со скошенными бортиками, косые линии предназначены для предания поплавку устойчивости.
В зависимости от пределов измерения поплавок изготовляют из: эбонита, дюралюминия или нержавеющей стали. Шкала нанесена непосредственно на стеклянной трубке.
Преимущества ротаметров:
1. Простота конструкции
2. Возможность измерения малых расходов
3. Значительный диапазон измерения
4. Возможность измерения агрессивных сред
5. Равномерная шкала.
Используются для измерения расхода неагрессивных жидкостей.
Метод переменного перепада давления.
Для того, чтобы создать перепад давлений в трубопроводе, устанавливают сужающее устройство. На нашем предприятии в качестве сужающего устройства применяют диафрагмы. Конструктивно диафрагма представляет из себя диск с отверстием, который вставляется в трубопровод.
Р1 – самое большое давление перед диафрагмой;
Р2, Р3 – промежуток, в котором будет самое маленькое давление;
Р4 – самое большое давление после диафрагмы;
Рn – давление потерь (это и есть перепад давлений между Р и Р4, для которого устанавливается сужающее устройство).
Перепад давления обозначается ∆Р и находится по формуле:
∆Р = Р – Р2
Перед диафрагмой давление измеряемой среды возрастает, а скорость ее перемещения по трубопроводу снижается. После диафрагмы давление измеряемой среды снижается, а скорость ее перемещения возрастает.
Отбор давления производится рядом с сужающим устройством.
Перепад давления ∆Р на сужающем устройстве является мерой расхода. Из формулы определения расхода видно, что они связаны между собой зависимостью через корень квадратный, поэтому на выходе из дифманометра сигнал имеет форму параболы.
Таким образом, если не предусмотреть дополнительного устройства на выходе из дифманометра, то шкала вторичного прибора по всей длине будет неравномерной, но особенно это просматривается в нижней части шкалы.
Для того, чтобы преобразовать нелинейную зависимость в линейную и чтобы шкала была равномерной устанавливают приборы извлечения квадратного корня. Во многих электронных вторичных приборах эти преобразователи устанавливаются программно, т.е. устанавливаются при программировании контроллера.
Существует несколько видов сужающих устройств:
1. Диафрагмы – они подразделяются на стандартные и нестандартные.
Стандартные диафрагмы устанавливаются в трубопроводах таким образом, чтобы скосы были на выходе.
К нестандартным диафрагмам относятся:
Конические диафрагмы применяют для измерения расхода запыленных, загрязненных и очень вязких сред. Их устанавливают в трубопроводе таким образом, чтобы скоси были на входе.
Секторные диафрагмы применяют для измерения сыпучих материалов.
2. Сопло Вентури.
3. Труба Вентури.
4. Дроссель (переменный, постоянный).
Сужающие устройства соединяются с дифманометрами соединительными импульсными проводками, а те в свою очередь преобразуют перепад давления в унифицированный пневматический или электрический сигнал. Этот сигнал передается на вторичный прибор, а затем, если имеется компьютер, на монитор.
Электромагнитные расходомеры.
Электромагнитные расходомеры применяют для измерения расхода электропроводящих жидкостей.
Расходомер представляет собой отрезок трубы из нержавеющей стали, с расположенными снаружи полюсами электромагнита. По оси в трубопроводе расположены токосъемные электроды. Участок трубопровода по обе стороны от электродов покрыт электроизоляцией. Роль проводника в таком расходомере выполняет электропроводная жидкость, перемещающаяся по трубопроводу и пересекающая магнитное поле электромагнита. В жидкости будет наводиться ЭДС (электродвижущая сила, т.е. напряжение) пропорциональная скорости ее движения, т.е. расходу жидкости. Степень агрессивности для таких приборов определяется материалом изоляции трубы и электродов первичного преобразователя.
Турбинные расходомеры.
Турбоквант предназначен для измерения объемного и массового расхода различных жидкостей и газов. Также этот прибор осуществляет суммирование расхода, выдает количество вещества.
Турбинка устанавливается только в горизонтальных трубопроводах. Поток измеряемой среды проходит через турбинку и приводит во вращение ее лопасти. Число оборотов крыльчатки пропорционально расходу. На турбинке установлен преобразователь, который состоит из катушки с магнитным сердечником.
Лопасти крыльчатки выполнены из ферромагнитного сплава (т.е. из не магнитящегося материала). При вращении они поочередно пересекают магнитное поле, которое наводит магнит и в катушке наводится ЭДС в виде импульса, причем число импульсов за один оборот крыльчатки будет равно числу лопастей. Таким образом, частота импульсов пропорциональна расходу. Этот выходной сигнал от турбинки по кабелю поступает на частотомер, т.е. на Турбоквант.
Ультразвуковые расходомеры.
Принцип действия ультразвуковых расходомеров основан на пьезоэлектрическом эффекте, т.е это фактическая скорость распространения ультразвуков в движущейся среде, которая равна геометрической сумме скорости движения среды и скорости звука в этой среде.
Ультразвуковой расходомер представляет собой отрезок трубы, в который установлены излучатель ультразвука и его приемник. Время, за которое сигнал проходит от излучателя к приемнику преобразуется в величину расхода.
Расходомеры по эффекту »Кориолисовых сил».
Принцип работы основан на использовании эффекта Кориолисовых сил.
Конструкция расходомера TRIO-MASS выполнена с использованием двух параллельных труб, что позволяет уменьшить габаритные размеры, увеличить жесткость конструкции и выпускать расходомеры в широком диапазоне диаметров.
Использование в конструкции TRU-MASS однотрубной спирали дает возможность предлагать широкий диапазон вариантов соединения с трубопроводом.
При прохождении массовым потоком трубы, к которой приложены принудительные колебания, Кориолисовы силы вызывают крутящий момент в сечении трубы. Труба расходомера постоянно вибрирует со своей резонансной частотой, которая является функцией массы измерительной системы, составленной из массы трубы и протекающей рабочей жидкости.
Как только резонансная частота колебаний начинает изменяться, как результат изменения плотности рабочей жидкости автоматически производится изменение частоты возбуждения внешним источником вибраций. Это позволяет одновременно с измерениями расхода проводить измерения плотности рабочей жидкости. Встроенный температурный датчик позволяет производить эти измерения с поправкой на температуру.
Тепловые расходомеры.
Принцип действия основан на теплопроводности измеряемого вещества. При постоянной мощности нагревателя количество тепла, забираемое от него потоком, при постоянном расходе будет постоянно.
С увеличением расхода нагрев потока будет уменьшаться, что определяется разностью температур.
Вихревые расходомеры.
Основаны на явлении возникновения вихрей при встрече потока с телом не обтекаемой формы. В результате от его тела (противоположных граней) будут отлетать вихри.
Скорость отрыва вихрей зависит от расхода вещества.
Принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкости, при обтекании ею призмы, расположенной поперек потока.
Преобразователь состоит из проточной части и электронного блока. В корпусе проточной части расположены тело обтекания – призма трапецеидальной формы (1) и пьезоизлучатели ПИ1 и ПИ2 (2), пьезоприемники ПП1 и ПП2 (3) и термодатчик (7).
Электронный блок включает в себя генератор (4), фазовый детектор (5), микропроцессорный адаптивный фильтр с блоком формирования выходных сигналов (6).
3 thoughts on “ Измерение расхода ”
Для объяснения самой физики принципов измерения очень даже красиво
А может такое быть, что перепад давления есть, а расхода нет??