Расходомерная шайба что это
Измерение расхода жидкости: приборы и методы
Расход – это объем жидкости протекающий в единицу времени через поперечное сечение трубопровода. Измерение расхода жидкости является одной из задач при производственных испытаниях оборудования.
В этой статье мы собрали для Вас все современные методы определения расхода жидкости, а так же приборы для измерения расхода: трубчатые расходомеры, расходомерные шайбы, крыльчатые расходомеры, ультразвуковые и вихревые расходомеры.
Содержание статьи
Методы измерения расхода жидкости
Наиболее простые и вместе с тем точные методы измерения расхода жидкости являются объемный и массовый (весовой).
В соответствии с методами измерения, единицами расхода жидкости являются:
для объемного способа: м 3 /с, м 3 /ч
для массового способа: кг/c, кг/ч, г/с и т.д.
При объемном способе измерения протекающая в исследуемом потоке(например, в трубе) жидкость поступает в особый, тщательно протарированный сосуд (так называемый мерник), время наполнения которого точно фиксируется по секундомеру.
Если известен объем мерника – V и измеренное время его наполнения – T, то объемный расход будет
При весовом способе взвешиванием находят вес Gv = mv*g (где g – ускорение свободного падения) всей жидкости, поступившей в мерник за время T. Затем определяют её массу
и по ней, зная плотность жидкости (ρ), вычисляют объемный расход
Но объемный и весовой методы измерения расхода жидкости пригодны только при сравнительно небольших значениях расхода жидкости, так как в противном случае размеры мерников получаются довольно громоздкими и, как следствие, замеры очень затруднительными.
Кроме того, этими способами невозможно измерить расход в произвольном сечении, например, длинного трубопровода или канала без нарушения их целостности. Поэтому, за исключением случаев измерения сравнительно небольших расходов жидкостей в коротких трубах и каналах, объемный и весовой способы, как правило, не применяются, а на практике пользуются специальными приборами, которые предварительно тарируются объемным или весовым способом.
Приборы для измерения расхода жидкости
Трубчатые расходомеры
Одним из таких приборов является трубчатый расходомер или расходомер Вентури. Большим достоинством этого расходомера является простота конструкции и отсутствие в нем каких-либо движущихся частей. Трубчатые расходомеры могут быть горизонтальными и вертикальными. Рассмотрим, к примеру, горизонтальный вариант.
Расходомер состоит из двух цилиндрических труб А и В диаметра d1, соединенных при помощи двух конических участков (патрубков) С и D с цилиндрической вставкой E меньшего диаметра d2. В сечениях 1-1 и 2-2 расходомера присоединены пьезометрические трубки a и b, разность уровней жидкости h в которых показывает разность давлений в этих сечениях.
Расход жидкости в этом случае определяется по тарировочным кривым, полученным опытным путем и дающим для данного расходомера прямую зависимость между показаниями манометра и измеряемыми расходами жидкости. Пример такой кривой на картинке рядом
Расходомерная шайба
Другим широко распространенным прибором для измерения расхода является расходомерная шайба (или диафрагма), обычно выполняемая в виде плоского кольца с круглым отверстием в центре, устанавливаемого между фланцами трубопровода
Края отверстия чаще всего имеют острые входные кромки под углом 45° или закругляются по форме втекающей в отверстие струи жидкости (сопло). Два пьезометра a и b (или дифференциальный манометр) служат для измерения перепада давления до и после диафрагмы. В основе метода положен принцип неразрывности Бернулли.
Расход в этом случае определяется по замеренной разности уровней в трубках. Трубки подсоединяют к датчикам, замеряющим перепад давления. Датчик перепада давления преобразует перепад в электрический сигнал, который отправляется на компьютер.
Крыльчатый расходомер
Расходы могут быть вычислены также в результате измерения скоростей течения жидкости и живых течений потока.
Одним из широко распространенных приборов, применяемых для этой цели является гидрометрическая вертушка. Современный турбинный расходомер устанавливают только на горизонтальном участке трубопровода. Лопасти крыльчатки колеса турбины изготавливают из не магнитного материала.
Вертушка состоит из крыльчатки А, представляющей собой колесо с винтовыми лопастями, насаженное на горизонтальный вал С. Когда она установлена в потоке, крыльчатка под действием протекающей жидкости вращается, причем число её оборотов прямо пропорционально скорости течения. Число импульсов за один оборот крыльчатки равно числу лопастей, а значит частота импульсов пропорциональна расходу.
При вращении лопасти поочередно пересекают магнитное поле, которое наводит электродвижущую силу в катушке в виде импульса. От вертушки вверх выводятся провода В, подающему сигнал к специальному счетчику, автоматически записывающему число оборотов и время.
Приборы для измерения расхода жидкости в этом случае называют турбинными расходомерами
Ультразвуковой метод измерения расхода
Ультразвуковой расходомер работает по принципу использования разницы по времени прохождения ультразвукового сигнала в направлении потока и против него.
Расходомер формирует электрический импульс, поступающий на пьезоэлемент П1, который излучает электромеханические колебания в движущуюся среду. Эти колебания воспринимаются через некоторое время пьезоэлементом П2, преобразуются им в электрический импульс, попадающий в электронное устройство и снова направляемый им на пьезоэлемент П1 и т.д.
Такой контур П1-П2 характеризуется частотой f1 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной разности между скоростью распространения звука в контролируемой среде и скоростью самой среды.
Аналогично электронное устройство подает импульсы в обратном направлении, т.е. от пьезоэлемента П2 к пьезоэлементу П1. Контур П2-П1 характеризуется своей частотой f2 повторений импульсов, прямо пропорциональной расстоянию между пьезоэлементами и обратно пропорциональной сумме скоростей распространения звука в среде и самой среды.
Следующим шагом является определение разности Δf указанных частот, которая пропорциональна расходу среды. Приборы для измерения расхода жидкости называются ультразвуковые расходомеры.
Вихревой метод измерения расхода
В основу работы вихревых расходомеров положена зависимость между расходом и частотой возникновения вихрей за твердым телом (например, металлическим прямоугольным стержнем), которое расположено в потоке жидкости или газа.
Принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкости, при обтекании жидкостью специальной призмы, расположенной поперек потока.
В зависимости от конструкции датчика чувствительные тепловые элементы устанавливаются непосредственно в теле датчика или вихревой дорожке.
Если в тело образующее вихри, установить магнит, то он может служить датчиком. Реакция, возникающая при срыве вихрей, заставляет помещённый в поток цилиндр колебаться с частотой вихреобразования. Достоинством вихревых расходомеров является, обеспечение низкой зависимости качества измерений от физико-химических свойств жидкости, состояния трубопровода, распределения скоростей по сечению потока и от точности монтажа первичных преобразователей на трубопроводе. Приборы для измерения расхода жидкости называются вихревые расходомеры.
Видео о измерении расхода
При проведении измерения расхода, в некоторых случая используется понятие количества вещества – это количество жидкости или другой среды, проходящей через поперечное сечение трубопровода в течении определенного промежутка времени(за час, месяц, рабочую смену и т.д.)
Приборы для измерения количества вещества по аналогии с измерением расхода монтируются на – на трубопроводе, с выводом вторичного прибора к оператору.
ТГК-14 разъясняет: для чего нужна расходомерная диафрагма («шайба»)
Дроссельная диафрагма, как и обычная, представляет собой плоский кусок металла с отверстием определенного диаметра. Он выполняет очень важные функции. Его задача – обеспечивать распределение потоков в коммунальных водопроводах для циркуляции воды.
Принцип работы устройства изложил заместитель главного инженера ТГК-14 по эксплуатации тепловых сетей Сергей Воронцов.
— Это называется дроссельная диафрагма. Ее предназначение – регулировать и распределять потоки горячей воды между объектами. Эта шайба установлена в соответствии с необходимой тепловой нагрузкой жилого дома.
Более подробно принцип работы пояснили на примере дома № 114 по ул. Жердева.
Чтобы у всех была горячая вода – ее необходимо правильно распределить по всей сети. Ее уход надо ограничить, чтобы поток направить дальше, чтобы циркуляция воды была одинакова во всех стояках.
Трогаем «обратку», труба действительно горячая. Она подходит к переходнику, в который и вставляется «шайба». В данном случае это кусок жести с отверстием диаметром два миллиметра. Дроссельная диафрагма вставляется в трубу, чтобы снизить напор уходящей из системы горячей воды. Такая «шайба» заставляет горячую воду не выходить назад по обратке, а двигаться дальше по системе горячего водоснабжения. Тонкий ручеек, который проходит через отверстие, быстрее остывает и возвращается на подогрев. А основная часть горячей воды под давлением продолжает движение по трубам.
В следующем подъезде на обратке есть такая же шайба. Она позволяет обеспечивать циркуляцию, напор и постоянно высокую температуру воды в большом количестве домов. Чем дальше дом от магистрали (или чем дальше подъезд в многоподъездном доме), тем холоднее будет вода, если на обратке не будет стоять правильно рассчитанная шайба и тормозить возвращающийся сверху кипяток.
Если в одном из подъездов шайбы не будет – это скажется на температуре и напоре воды в следующих подъездах и домах.
Как поясняют сотрудники ТГК-14, их задача, как и управляющих компаний – дать и первым потребителям требуемую температурную норму, и обеспечить горячей водой все остальные дома. В тех случаях, где сопло (более дорогой вариант с более сложным механизмом) или шайба на обратке не ставится – горячая вода может «закончиться» уже в первом на магистрали доме. Горячая вода просто пройдет через систему и уйдет в обратную сторону.
Как пояснил Сергей Воронцов, такие ситуации периодически бывают.
— Человек звонит с жалобой, что нет горячей воды. Мы проводим проверку, как отработала управляющая компания и какая температура воды. Каждой управляющей компании мы выдаем им расчет – какого диаметра диафрагма должна стоять на каждом доме, на каждом стояке, чтобы обеспечить правильную температуру и циркуляцию воды.
Установкой шайб занимается уже управляющая компания. В случае, если в доме нет горячей воды – чаще всего, где-то нарушена циркуляция. Выезжаем и вместе с коммунальной компанией ищем причину.
Таким образом, при использовании по назначению шайба – совершенно необходимый элемент горячего водоснабжения. И за правильностью его применения в нашем городе следят сразу несколько организаций.
Если обращение в управляющую компанию не дает результата – нужно написать заявление в жилищный отдел комитета городского хозяйства администрации города. Комитет проведет проверку, и если температура воды не соответствует нормативу – обяжет коммунальщиков навести порядок. Если не работает и КГХ – обращайтесь в муниципальную жилищную инспекцию. Но не забывайте документально фиксировать свои обращения – это поможет и привести воду в норму, и снизить цену за недополученную температуру воды.
Диафрагмы для измерения расхода: подробно простым языком
Диафрагмы для измерения расхода — это простые приспособления, которые устанавливаются в трубопроводах для сужения потока жидкости, газа и пара. Это плоский, круглый диск с проходным сечением или отверстием. Диафрагмы обычно классифицируются в зависимости от формы проходного отверстия и/или его расположения на диске.
Схема концентрической диафрагмы
Схемы эксцентрической и сегментной диафрагм
Применение диафрагмы
Размер, форма и расположение отверстия диафрагмы — это конструктивное решение, зависящее от того, для каких установок предназначена эта диафрагма. Например, эксцентрическую диафрагму можно было бы использовать для влагонасыщенных газов, это бы позволило конденсирующейся в нижней части трубопровода жидкости пройти через отверстие. Сегментную диафрагму, с проходным отверстием в виде части окружности, расположенным в верхней части, установленной в горизонтальном положении трубы, можно было бы использовать для жидкостей с большим насыщением газами, которые могут подниматься и скапливаться в верхней части трубопровода. В любом из случаев целью этих конструктивных решений является предотвращение скопления какого-либо вещества выше по потоку относительно диафрагмы. Это будет изменять расход жидкости, газа или пара и приводить к неточностям во время измерений.
Диафрагма, установленная между двумя фланцами
Это пример трубопровода с концентрической диафрагмой, установленной между двумя фланцами. Фланец — это венец вокруг трубы, с помощью которого осуществляет болтовое соединение двух секций труб. Перепад давления, созданный в результате установки диафрагмы, измеряется с помощью расположенных по обе стороны диафрагмы отборов. Отбор — это отверстие в трубе с вмонтированной в него трубкой.
Расположение отборов в месте установки диафрагмы
Маркировка диафрагм
Обычно на диафрагмах стоит маркировка с указанием информации по поводу размера проходного отверстия. Как правило, эта информация отштампована на хвостовике диафрагмы. Кроме размера проходного отверстия, там может быть и другая информация, такая как: название завода-изготовителя и код материала, из которого изготовлена диафрагма, соответствующий размер трубы, для установки в которую сконструирована данная диафрагма. Эта информация предельно важна для киповца, которому приходится заниматься заменой диафрагм при повреждении или по причине того, что она сработалась. На хвостовике новой диафрагмы, которую устанавливают, должна быть такая же маркировка с информацией идентичной информации заменяемой старой диафрагмы.
Маркировка на хвостовике диафрагмы
По причине того, что диафрагмы могут быть специальной конструкции для правильной бесперебойной эксплуатации, необходимо соответствующее проекту размещение проходного отверстия. Многие производители при маркировке всех своих диафрагм добавляют слова «Up» (вверх) или «Inlet» (входная). В противном случае, при отсутствии данных слов в маркировке, общее правило монтажа всех диафрагм такого: устанавливать диафрагму нужно таким образом, чтобы сторона с маркировкой была входной для проходящего через диафрагму потока. Ориентация при установке диафрагм без маркировки определяется в зависимости от типа ребер проходного отверстия.
Типы ребер диафрагм проходного отверстия
На рисунке выше в качестве примера изображены две диафрагмы со следующими типами ребер проходного отверстия: ребро диафрагмы со скосом и с углубленной фаской, нарезанной по краю ребра. В обоих случаях ребро проходного отверстия с другой стороны диафрагмы обычное прямоугольное, без скоса или фаски.
В обоих случаях, как при установке диафрагм с маркировкой, так и при установке диафрагм без маркировки, следует устанавливать диафрагму так, чтобы поток входил в диафрагму со стороны обычного прямоугольного ребра проходного отверстия. Скошенное или с нарезной фаской ребро проходного отверстия должно находится со стороны ниже по потоку относительно диафрагмы.
Замена диафрагмы
По мере сработанности обычное прямоугольное ребро у диафрагмы становиться округлым и приходит необходимость замены её на новую. При замене диафрагмы по причине того, что она сработалась, должны быть учтены два основных фактора: новая диафрагма должна быть идентична сработанной, и установка диафрагмы должна быть выполнена в соответствии с правильной ориентацией сторон диафрагмы.
Дроссельная шайба
Дроссельная шайба или «дроссельная диафрагма» или «расходомерная диафрагма» (англ. throttling orifice [1] ) — дросселирующее устройство, которое представляет собой диск с отверстием, вставляемый в трубу для местного увеличения гидравлического сопротивления потоку жидкости, пара или газа. Применяется в паровых котлах, теплообменниках и др. аппаратах для выравнивания расхода по параллельно включённым трубам, а также для устранения пульсаций давления в трубопроводных системах поршневых компрессоров и насосов и т. д. [2] При специальной обработке кромки может использоваться как измерительная диафрагма.
См. также
Примечания
Полезное
Смотреть что такое «Дроссельная шайба» в других словарях:
дроссельная шайба — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN throttle orificeorifice plug … Справочник технического переводчика
дроссельная шайба на входе в трубу — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN entrance orifice … Справочник технического переводчика
регулирующая дроссельная шайба — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN control orifice … Справочник технического переводчика
дроссельная [расходомерная] шайба — дроссельная [расходомерная] диафрагма — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы дроссельная [расходомерная] диафрагма EN orifice gageorifice gauge … Справочник технического переводчика
ШАЙБА ДРОССЕЛЬНАЯ — диск с отверстием, вставляемый в трубу для местного увеличения гидравлич. сопротивления потоку жидкости, пара или газа. Применяется в паровых котлах, теплообменниках и др. аппаратах для выравнивания расхода по параллельно включённым трубам, а… … Большой энциклопедический политехнический словарь
Р НП АВОК 3.2.1-2008: Квартирные тепловые пункты в многоквартирных жилых домах — Терминология Р НП АВОК 3.2.1 2008: Квартирные тепловые пункты в многоквартирных жилых домах: 5.6 Комплектация КТП приборами учета энергоресурсов 5.6.1 КТП, рассмотренные в 5.1 5.3, в базовом исполнении укомплектованы разъемами для установки… … Словарь-справочник терминов нормативно-технической документации
Описание — 3.2. Описание СИЗОД фильтрующие с принудительной подачей воздуха, используемые с масками, полумасками и четвертьмасками обычно состоят из следующих элементов: а) одного или нескольких фильтров, через который (которые) проходит весь воздух,… … Словарь-справочник терминов нормативно-технической документации
Описание функционирования КТП с приоритетным режимом ГВС — 5.2 Описание функционирования КТП с приоритетным режимом ГВС Технические характеристики приведены в приложении Б. 5.2.1 КТП в режиме отопления. Управление отопительным контуром квартиры Греющий теплоноситель Т11 от домового теплового пункта… … Словарь-справочник терминов нормативно-технической документации
КТП обеспечения локального ГВС — 5.4 КТП обеспечения локального ГВС Гидравлическая схема квартирного теплового пункта для обеспечения локального ГВС приведена на рисунке 16. Рисунок 16 Гидравлическая схема квартирного теплового пункта для обеспечения локального ГВС: 1… … Словарь-справочник терминов нормативно-технической документации
КТП с параллельным режимом работы контуров отопления и ГВС (увеличенной отопительной мощности). Условный приоритет контура ГВС — 5.3 КТП с параллельным режимом работы контуров отопления и ГВС (увеличенной отопительной мощности). Условный приоритет контура ГВС 5.3.1 Базовая комплектация квартирных тепловых пунктов с условной гидравлической связью режима работы… … Словарь-справочник терминов нормативно-технической документации
Расходомерная диафрагма
Принципиальная схема измерения расхода по методу переменного перепада давления.| Камерная диафрагма.| Расход оперное сопло. |
Расходомерная диафрагма представляет собой диск с отверстием. Диафрагмы бывают бескамерные и камерные. Бескамерная диафрагма 2 ( ГОСТ 26969 — 86) представляет собой стальной диск, имеющий концентрическое ( симметричное оси) отверстие с острой кромкой со стороны входа потока и коническую часть со стороны выхода. Толщина диска не должна превышать 0 05 внутреннего диаметра трубопровода. Бескамерные диафрагмы применяют в трубопроводах диаметром более 400 мм. Отбор давления производится непосредственно перед диафрагмой и после нее по ходу потока в трубопроводе.
Принципиальная схема измерения расхода по методу переменного перепада давления. |
Расходомерная диафрагма представляет собой диск с отверстием. Диафрагмы бывают бескамерные и камерные. Бескамерная диафрагма 2 ( ГОСТ 14322 — 77) представляет собой стальной диск, имеющий концентрическое ( симметричное оси) отверстие с острой кромкой со стороны входа потока и коническую часть со стороны выхода. Толщина диска не должна превышать 0 05 внутреннего диаметра трубопровода. Бескамерные диафрагмы применяют в трубопроводах диаметром более 400 мм. Отбор давления производится непосредственно перед диафрагмой и после нее по ходу потока в трубопроводе.
Расходомерная диафрагма является относительно тонкой шайбой, обычно с круговым отверстием; если центр отверстия совпадает с центром сечения трубы, то такая диафрагма называется нормальной. Если это отверстие касается своим краем края внутреннего диаметра трубы, то такая диафрагма называется эксцентрической. В сегментных диафрагмах отверстие выполнено в виде сегмента. В прямоугольных трубопроводах применяются диафрагмы с прямоугольным отверстием. В некоторых случаях отверстие делается в виде вертикальной щели, иногда вместо центрального кругового отверстия делается кольцевое с перемычками, поддерживающими центральную часть. Нормальная диафрагма может быть одиночной или двойной, а в зависимости от расположения диафрагмы на трубопроводе различают входные, нормальные и выходные диафрагмы. Основной считается нормальная и одиночная диафрагма.
Принципиальная схема измерения расхода по методу переменного перепада давления. |
Бескамерная расходомерная диафрагма 2 представляет собой стальной диск, имеющий концентрическое ( симметричное оси) отверстие с острой кромкой со стороны входа потока и коническую часть со стороны выхода. Толщина диска не должна превышать 0 05 внутреннего диаметра трубопровода. Расходомерные диа-фрагм — ы применяют в трубопроводах диаметром более 400 мм.
При большем давлении газа и расходе устанавливаются расходомерные диафрагмы в комбинации с дифманометром-расходомером.
При разработке немецких норм ДИН 1952 для расходомерных диафрагм до т 0 4 было найдено полное согласование между расчетными и экспериментальными значениями коэффициента расширения.
План кантовочного помещения. |
Характеристики ротационных счетчиков. |
Для измерения больших расходов газа применяются ротационные счетчики или расходомерные диафрагмы в комбинации сдиф-манометром-расходомером.
Схема предусматривает установку регуляторов давления непрямого действия на конечное среднее давление и двух расходомерных диафрагм по одной на каждой нитке.
Конструкция устройства
Перед установкой дроссельных шайб на систему отопления ее выполняют по чертежам в форме стального диска, вырезанного из листового металла толщиной 2-4 мм. Строго по центру просверливается расчетное отверстие. Минимальный допустимый диаметр на шайбе ограничен нормативными требованиями и должен быть не менее 3.0 мм. Толщина нерегулируемой шайбы для трубопроводов с наружным диаметром до 89 мм принимается от 2 до 3 мм, свыше – от 3 до 4 мм.
Расчетное отверстие регулируемой шайбы имеет продолговатую форму. Эта конструкция обладает двумя штоками, расположенными диаметрально противоположно в отношении друг друга. Для возможности наружного управления, их выводят сбоку через уплотнительные каналы. Вариация положений данных элементов изменяет площадь отверстия в конструкции. В том случае, когда они до конца задвинуты, то минимальный диаметр прохода равняется 5.5 мм, а при полностью открытых — диаметр прохода будет равный 18.0 мм. Подобные устройства снабжаются специальными ключами для выполнения операций по регулировке.
Кроме того, очень важно знать, что в такой конструкции существует возможность установить ограничения для передвижения штоков и его опломбирования. Это выполняется для того, чтобы потребители не смогли самостоятельно изменять проходное сечение устройства, тем самым вмешиваться в работу тепловой сети, вызывая ее разбалансировку
Отечественная промышленность выпускает следующие виды дроссельных шайб для регулировки режимов тепловой сети:
Наладка
Наладка тепловой сети происходит в несколько ключевых этапов. В самом начале ведется разработка плана по регулировке тепловой системы. Здесь нужно помнить, что каждая тепловая система, по сути своей, уникальна, даже если в ней неизменно будут соблюдаться все государственные стандарты мирового качества. Именно благодаря им между системами есть несколько основных закономерностей, но это не исключает необходимости проводить гидравлический расчет сети в самом начале работы. Способов расчета в данном случае существует несколько.
На втором этапе определяется вариант и возможность установки дроссельных шайб на теплосеть. Для этого у мастера тоже есть несколько возможных выборов.
После этого система отопления запускается и тестируется непосредственно перед следующим этапом. И если показатели отличаются от тех, что показаны в расчетах, у мастера может быть несколько выходов из создавшегося положения.
О том, как правильно рассчитать размер дроссельных шайб, смотрите в следующем видео.
Как установить?
Помимо установки, очень важно правильно провести расчет – это два ключевых этапа, которым нужно обязательно уделить внимание
Расчет
Провести расчет для отопительной системы означает учесть не только диаметр отверстия шайбы, но и еще несколько ключевых параметров. Несмотря на то что в расчете давления для воды и для газа используется всего одна-единственная формула, это все равно остается сложным и ответственным процессом. Главную роль здесь будет играть точность исходных данных, которые гарантируют бесперебойный тепловой и гидравлический режимы работы. Исходя из проведенных расчетов изготавливается шайба с необходимыми отверстием и сечением. Расчет может проводится двумя методами:
Дросселируемый напор, который гасится диафрагмой, рассчитывается из разницы давления между подающим и обратным давлением в трубах. Строго говоря, это минимальный и максимальный показатель внутридомовых труб. Учитывается и гидравлическое сопротивление, где суммируется вся потеря напора в тепловых сетях. Гидравлический расчет всегда является первым этапом, и для каждой системы он проводится отдельно согласно ряду обязательных к выполнению рекомендаций:
Установка
Как установить шайбу правильно? После выполнения расчетов и соответствия размеров остается только приложить её к нужному отверстию, закрепив её положение с помощью гайки. Закрепление должно быть максимально плотным, чтобы отопительная система работала. Стоит проверить надежность крепежа перед запуском системы!
Шайбы для системы отопления – ТСЖ Горизонт Пермь
Шайбирование тепловых сетей производится с целью распределить потоки теплоносителя между потребителями в соответствии с их потребностями. Без регулирования горячая вода от источника тепла большей частью поступает в здания, находящиеся вблизи котельной. Оставшийся небольшой объем воды направляется на периферию. Удаленным зданиям тепла не хватает, они мерзнут, тогда как в близлежащих зданиях наблюдается перетоп. Люди, открывая форточки, буквально отапливают улицу.
Чтобы этого не происходило, на ответвлениях тепловых сетей к зданиям устанавливаются ограничительные шайбы с калиброванным отверстием меньшего сечения, чем трубопровод. Благодаря этому появляется возможность увеличить объем теплоносителя для удаленных зданий.
Расчет шайб (размера отверстий) производится для каждого дома в зависимости от требуемого количества тепла. Положительный результат от шайбирования тепловых сетей может быть получен только в случае 100 % охвата всех зданий, присоединенных к тепловой сети. Параллельно с шайбированием необходимо привести в соответствие работу насосов в котельной с гидравлическим сопротивлением тепловой сети и.
Эффект от установки шайб
После установки шайб расход теплоносителя по трубопроводам тепловой сети снижается в 1,5-3 раза. Соответственно и количество работающих насосов в котельной также уменьшается. Отсюда возникает экономия топлива, электроэнергии, химреагентов для подпиточной воды. Появляется возможность повысить температуру воды на выходе из котельной. Подробнее о наладке наружных тепловых сетей и составе работ см…..Здесь надо дать ссылку на раздел сайта «Наладка тепловых сетей»
Шайбирование необходимо не только для регулирования наружных тепловых сетей, но и для системы отопления внутри зданий. Стояки системы отопления, находящиеся дальше от теплопункта, расположенного в доме, получают горячей воды меньше, здесь в квартирах холодно. В квартирах, расположенных близко к теплопункту, жарко, так как теплоносителя к ним поступает больше. Распределение расходов теплоносителя по стоякам в соответствии с требуемым количеством тепла осуществляется также с помощью расчета шайб и их установки на стояках.
Этапы шайбирования системы отопления
Обследование магистральных трубопроводов системы отопления в подвале и на чердаке (при его наличии)
Составление исполнительной схемы системы отопления с указанием диаметров трубопроводов, их длин, мест размещения арматуры (при отсутствии проекта)
Сбор данных о температуре внутреннего воздуха в квартирах с уточнением в каких квартирах тепло, в каких – холодно
Анализ причин неудовлетворительной работы системы отопления, выявление проблемных стояков (квартир)
Гидравлический расчет системы отопления, расчет шайб
Разработка рекомендаций по улучшению работы теплопункта, системы отопления
Установка регулирующих шайб на стояках (эту работу может проводить заказчик самостоятельно)
Проверка выполнения рекомендованных мероприятий
Анализ нового установившегося режима после шайбирования системы отопления
Корректировка размера шайб в местах, где не достигнут требуемый результат (расчетным путем)
Демонтаж шайб, требующих корректировки, установка новых шайб
На внутренних системах отопления шайбы можно устанавливать и зимой и летом. Проверять их работу – только в отопительный сезон.
Затраты на шайбирование
Затраты на шайбирование невысоки – это стоимость самих шайб и их монтажа на стояках. Стоимость работ по регулированию внутренних систем отопления зависит от тепловой мощности здания (количества стояков).
Минимальная цена – 40 тыс. руб. при тепловой мощности системы отопления до 0,5 Гкал/ч. Цена регулирования системы отопления многосекционного дома может доходить до 150 тыс. рублей. Удорожание работы возникает, когда отсутствует проектная документация. В этом случае приходится делать натурную съемку системы отопления и ее обмеры (диаметры, длины трубопроводов, места размещения арматуры).
Расчет дроссельной шайбы
Назначение и устройство регулировочных шайб ↑
Схема тепловой сети представляет сложную конструкцию, состоящую из котла, крепежей труб, магистралей, батарей, распределителя теплоносителя, циркуляционных помп и расширительного бачка. Дроссельная шайба в системе обогревания нужна для равномерного распределения водяного горячего потока, движущегося по трубам. Без нее теплоноситель от котла или иного источника отопления распределяется неравномерно. То есть, горячая вода больше поступает в помещения, находящиеся вблизи котельной, а ее остаток достается дальним комнатам.
Дроссельная шайба, монтируемая в системе отопления на ответвлениях трубопровода, представляет собой металлическую деталь с подобранным отверстием, меньшим от диаметра трубы. За счет таких регулировочных элементов удается эффективно нагревать помещения с наименьшим расходом энергоносителя.
За счет наличия шайб в трубопроводе обогрева здания общий расход теплоносителя в системе отопления снижается в 1,5 – 3 раза, из чего можно выделить такие преимущества:
Установка дроссельных шайб в системе отопления требует определенных знаний и навыков. Поэтому такую работу должны выполнять квалифицированные специалисты.
Установка дроссельной шайбы ↑
На практике процесс шайбирования отопительного трубопровода производится в несколько этапов.
Из указанного алгоритма технологического и технического процесса самое важное – это умение точно рассчитать диаметр шайб. Для этого необходимо пользоваться цифрами, полученными из расчетов, которые должны подходить к справочным данным
Как производится расчет дроссельной шайбы ↑
Диаметры отверстий дроссельного элемента рассчитываются по формуле:
Когда выполняется расчет, по предоставленной формуле требуется учитывать:
• H- дросселируемый напор (м вод. ст.);
• G –расход тепло несущей жидкости (т/час).
Важно знать, что перед установкой дроссельных диафрагм необходимо тщательно промыть систему отопления. Чтобы система не забывалась мусором, требуется монтировать шайбы не менее 3 мм
Также надо знать, что демонтаж шайб в системах, находящихся под давлением запрещен.
Установление размера шайб необходимо делать для каждого помещения. Максимальная эффективность достигается, когда они будут установлены на всех контурах и по всем комнатам. Параллельно с установкой данных элементов нужно проверить функционирование циркуляционных помп и их соответствие требуемым нормам.
Шайбирование сети обогрева позволит распределить горячую воду по всем помещениям в зависимости от их потребностей. Таким способом можно нагреть самые дальние точки до требуемой температуры без дополнительного увеличения мощности источника тепла.
Маркировка диафрагм
Обычно на диафрагмах стоит маркировка с указанием информации по поводу размера проходного отверстия. Как правило, эта информация отштампована на хвостовике диафрагмы. Кроме размера проходного отверстия, там может быть и другая информация, такая как: название завода-изготовителя и код материала, из которого изготовлена диафрагма, соответствующий размер трубы, для установки в которую сконструирована данная диафрагма. Эта информация предельно важна для киповца, которому приходится заниматься заменой диафрагм при повреждении или по причине того, что она сработалась. На хвостовике новой диафрагмы, которую устанавливают, должна быть такая же маркировка с информацией идентичной информации заменяемой старой диафрагмы.
Маркировка на хвостовике диафрагмы
По причине того, что диафрагмы могут быть специальной конструкции для правильной бесперебойной эксплуатации, необходимо соответствующее проекту размещение проходного отверстия. Многие производители при маркировке всех своих диафрагм добавляют слова «Up» (вверх) или «Inlet» (входная). В противном случае, при отсутствии данных слов в маркировке, общее правило монтажа всех диафрагм такого: устанавливать диафрагму нужно таким образом, чтобы сторона с маркировкой была входной для проходящего через диафрагму потока. Ориентация при установке диафрагм без маркировки определяется в зависимости от типа ребер проходного отверстия.
Типы ребер диафрагм проходного отверстия
На рисунке выше в качестве примера изображены две диафрагмы со следующими типами ребер проходного отверстия: ребро диафрагмы со скосом и с углубленной фаской, нарезанной по краю ребра. В обоих случаях ребро проходного отверстия с другой стороны диафрагмы обычное прямоугольное, без скоса или фаски.
В обоих случаях, как при установке диафрагм с маркировкой, так и при установке диафрагм без маркировки, следует устанавливать диафрагму так, чтобы поток входил в диафрагму со стороны обычного прямоугольного ребра проходного отверстия. Скошенное или с нарезной фаской ребро проходного отверстия должно находится со стороны ниже по потоку относительно диафрагмы.
Расчёт параметров течения газа через дроссельную шайбу (L 2 ;
P0 – давление перед дроссельной шайбой;
P1/P0 – отношение давлений до и после дроссельной шайбы;
e – коэффициент расхода;
На вспомогательном графике определения коэффициента расхода на входе в дроссельное отверстие (еin)
F1/F0 – отношение площади отверстия дроссельной шайбы к площади проходного сечения канала перед дроссельной шайбой.
На вспомогательном графике определения коэффициента расхода на выходе из дроссельного отверстия (еout)
F1/F0 – отношение площади отверстия дроссельной шайбы к площади проходного сечения канала после дроссельной шайбы.
Расход газа для докритического режима течения:
G = e · F · P0 · [(2 · g/(R · T)) · (k/(k-1)) · ((P1/P0) 2/k – (P1/P0) (k+1)/k ] 0,5
Расход газа для надкритического режима течения:
G = e · F · P0 · [(2 · g/(R · T)) · (k/(k+1)) · (2/(k+1)) 2/(k-1) ] 0,5
Критический перепад давления (при котором происходит переход от докритического течения к надкритическому) определяется по формуле:
Для построения системы номограмм данные формулы для нахождения расхода газа были разбиты на следующие комплексы:
C-ex A = e · [2 · g/(R · T) ] 0,5
Для докритического режима – C-ex B = [(k/(k-1)) · ((P1/P0) 2/k – (P1/P0) (k+1)/k ] 0,5
Для надкритического режима – C-ex B = [(k/(k+1)) · (2/(k+1)) 2/(k-1) ] 0,5
Показатель адиабаты вычисляем по формуле k = (Cv + R) / Cv = 1 + (R/Cv) или выбираем по таблице
Число степеней свободы
Схема работы с системой номограмм
Для выбора требуемых параметров используем следующую систему номограмм:
Основная система номограмм состоит из четырёх номограмм. Номограммы 1 и 2 имеют дополнительные системы номограмм, состоящие из трёх номограмм. Для первой номограммы – это определение коэффициента расхода е (ось Y), представляющего собой сумму коэффициентов расхода на входе и выходе дроссельной шайбы, которые в свою очередь зависят от отношения площадей и числа Рейнольдса (10 4 ). Также для первого графика используется дополнительная номограмма для определения произведения RT (газовой постоянной на температуру газа в К).
Для второй номограммы дополнительная система номограмм применяется для определения комплекса C-ex B. Данный комплекс рассчитывается по разным формулам для докритического и надкритического режима течения. Зная значение коэффициента адиабаты k, по нижнему графику дополнительной системы номограмм определяем критический перепад давления для данной шайбы. Если выбранный нами перепад давления на шайбе меньше [P1/P0]cr, значит течение надкритическое и комплекс C-ex B определяется по правому вспомогательному графику и зависит только от k. Если выбранный нами перепад больше [P1/P0]cr, то течение докритическое и C-ex B определяется по левой номограмме и зависит уже от k и P1/P0.
Для всех вариантов общими являются следующие диапазоны параметров:
Наладочный расчет потребителей тепла, дроссельные шайбы и элеваторы
Подсистема “Наладка” ИГС “CityCom‑ТеплоГраф”
Данная подсистема представляет собой инструментарий для расчета наладочных устройств, установка которых позволяет сбалансировать гидравлический режим в тепловой сети, обеспечив равномерное теплоснабжение потребителей и гидравлическую устойчивость тепловой сети и системы теплоснабжения в целом.
Расчет сужающих устройств (дросселирующих шайб и сопел элеваторов) по видам подключенной тепловой нагрузки на потребителях предполагает значительно более подробное описание абонентских вводов, нежели при простом гидравлическом расчете и моделировании тепловой сети. Поэтому подсистема включает в себя соответствующие расширения базы данных паспортизации потребителей, а также необходимые дополнительные процедуры ввода.
Расчет наладочных устройств производится на откалиброванной в номинальном режиме гидравлической модели тепловой сети. В результате наладочного расчета генерируются аналитические документы, содержащие все необходимые данные о гидравлических характеристиках потребителей и параметрах гидравлического режима, а также результирующий документ с рассчитанными конструктивными параметрами сужающих устройств – головных и подпорных диафрагм, а также сопел элеваторов и шайб по видам присоединенной тепловой нагрузки.
Кроме собственно наладки абонентских вводов, подсистема позволяет также производить моделирование регулировки гидравлического режима прижатием задвижек в тепловых камерах с одновременным расчетом диаметров эквивалентных шайб, соответствующих “прижатой” арматуре, для их установки в регулируемых точках тепловой сети (напоминаем, что правила эксплуатации тепловых сетей категорически запрещают регулирование режима прижатием запорной арматуры).
Регулировка гидравлического режима в соответствии с расчетом, полученным с помощью подсистемы “Наладка”, позволяет получить реальный технико-экономический эффект, выражающийся в стабильном и равномерном удовлетворении потребителей тепловой энергией при снижении необходимого отпуска тепла с источника, а также в существенном снижении расхода электроэнергии на перекачку теплоносителя.
Чистая экономия от внедрения расчетных наладочных мероприятий может составить 5. 35%, в зависимости от исходного состояния тепловой сети и абонентских вводов.