Разомкнутый треугольник в трансформаторе напряжения для чего
Разомкнутый треугольник. Открытый треугольник
Следует отличать соединение в разомкнутый треугольник (рисунок 1, а) от соединения в открытый треугольник (рисунок 1, б), называемого иногда V-образным. Рассмотрим на нескольких типичных примерах области их применения.
Рисунок 1. Различие между соединениями в разомкнутый (а) и открытый (б) треугольники. Примеры применения соединений в разомкнутый треугольник: утроитель частоты (в) и фильтр напряжения нулевой последовательности (г).
Разомкнутый треугольник
Разомкнутый треугольник используется, например, в выпрямительных установках для получения тока тройной частоты, подмагничивающего уравнительный реактор (смотрите статью «Шестифазная звезда и двойной зигзаг», рисунок 3, а) С этой целью применяют утроитель частоты, который состоит из трех однофазных трансформаторов с сильно насыщенными магнитопроводами. Первичные обмотки утроителя частоты соединены в звезду с изолированной нейтралью, вторичные – в разомкнутый треугольник (рисунок 1, в). Сильное насыщение магнитопроводов, их малое магнитное сопротивление, непроходимость нейтрали первичной обмотки для токов третьей гармоники – все это обеспечивает возникновение во вторичных обмотках электродвижущей силы (э. д. с.) тройной частоты, совпадающих во времени у всех фаз (смотрите статью «Понятие о магнитном равновесии трансформатора»). Поэтому через УР, замыкающий контур вторичных обмоток утроителя частоты, проходит ток тройной частоты, что и требуется в данном случае (смотрите статью «Шестифазная звезда и двойной зигзаг»).
В нормальных условиях, а также при коротких замыканиях, но без заземления геометрическая сумма фазных напряжений равна нулю. Следовательно, напряжение на обмотке реле равно нулю и оно не срабатывает. Однако при замыкании на землю в напряжениях появляется составляющая нулевой последовательности U0. Реле срабатывает и производит заданные действия (включает сигнал, отключает заземленный участок, включает резерв и тому подобное).
Обращается внимание на следующее. Заземление нейтрали первичной обмотки (рисунок 1, г) – необходимое условие для действия схемы. Заземление вторичной обмотки – средство обеспечения безопасности (смотрите статью «Схема соединения «Звезда»). Токи третьих гармоник в контуре вторичных обмоток не возникают, так как трансформаторы напряжения работают при малых индукциях, благодаря чему их магнитопроводы далеки от насыщения.
Открытый треугольник
Открытый треугольник в силовых электроустановках редко используется, но в цепях измерения, учета и сложных релейных защит находит самое широкое применение.
На рисунке 2, а в открытый треугольник соединены два однофазных силовых трансформатора. Это равносильно тому, что из трехфазной группы один трансформатор попросту отсоединен, но все внешние выводы как с первичной, так и со вторичной стороны оставлены. Особенности такого соединения состоят в следующем:
1. В фазах ab и ac проходят линейные токи, сдвинутые по фазе при активной нагрузке относительно соответствующих фазных напряжений на 30°. Значит, каждый трансформатор при активной нагрузке работает с cos φ = 0,866 (а не cos φ = 1). Поэтому отдаваемая мощность двух трансформаторов, соединенных в открытый треугольник, составляет не 2/3, а только 58% (2/3 от 86,6%) мощности, которая была бы при закрытом треугольнике.
Рисунок 2. Примеры соединений в открытый треугольник.
2. Различные сопротивления для линейных токов нарушают симметрию под нагрузкой.
Другой пример, (рисунок 2, б) показывает соединение в открытый треугольник обмоток напряжения 2 трехфазного счетчика для трехпроводных сетей трехфазного тока (схема Арона). Токовые обмотки 1 включены в фазы a и c. К обмоткам напряжения подведены напряжения между фазами ab и bc. Буквы Г и Н соответственно обозначают «генератор» и «нагрузка». Звездочками отмечены начала обмоток (смотрите статью «Примеры соединений измерительных трансформаторов»).
1 Прямая, обратная и нулевая последовательности – термины метода симметричных составляющих, с помощью которого рассчитываются схемы с несимметричной нагрузкой.
2 UAB = k × Uab, UBC = k × Ubc, UCA = k × Uca, где k – коэффициент трансформации трансформатора напряжения, в нашем примере 10000 : 100 = 100. Вольтметры градуируют в киловольтах.
Источник: Каминский Е. А., «Звезда, треугольник, зигзаг» – 4-е издание, переработанное – Москва: Энергия, 1977 – 104с.
Измерительные трансформаторы напряжения
Назначение и принцип действия трансформатора напряжения
Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.
Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.
Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.
Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чему обеспечивается безопасность их обслуживания.
Трансформаторы напряжения широко применяются в электроустановках высокого напряжения, от их работы зависит точность электрических измерений и учета электроэнергии, а также надежность действия релейной защиты и противоаварийной автоматики.
Измерительный трансформатор напряжения по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток.
На рис. 1,а показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение U1, а на напряжение вторичной обмотки U2 включен измерительный прибор. Начала первичной и вторичной обмоток обозначены буквами А и а, концы — X и х. Такие обозначения обычно наносятся на корпусе трансформатора напряжения рядом с зажимами его обмоток.
Отношение первичного номинального напряжения к вторичному номинальному напряжению называется номинальным коэффициентом трансформации трансформатора напряжения Кн = U1 ном / U2 ном
При работе трансформатора напряжения без погрешностей его первичное и вторичное напряжение совпадают по фазе и отношение их величин равно K н. При коэффициенте трансформации K н=1 напряжение U 2 =U 1 (рис. 1,в).
Условные обозначения: З — один вывод заземляется; О — однофазный; Т — трехфазный; К — каскадный или с компенсационной обмоткой; Ф — с фарфоровой наружной изоляцией; М — масляный; С — сухой (с воздушной изоляцией); Е — емкостный; Д — делитель.
Выводы первичной обмотки (ВН) имеют обозначения А, Х для однофазных и A, B, С, N для трехфазных трансформаторов. Выводы основной вторичной обмотки (НН) имеют соответственно обозначения a, x и a, b, c, N, выводы вторичной дополнительной обмотки — ад и хд.
Начала первичных и вторичных обмоток присоединяются соответственно к выводам А, В, С и а, b, с. Основные вторичные обмотки соединяются обычно в звезду (группа соединения 0), дополнительные — по схеме разомкнутого треугольника. Как известно, в нормальном режиме работы сети напряжение на зажимах дополнительной обмотки близко к нулю (напряжение небаланса Uнб = 1 — 3 В), а при замыканиях на землю равно утроенному значению 3UО напряжения нулевой последовательности UО фазы.
В сети с заземленной нейтралью максимальное значение 3U0 равно фазному напряжению, с изолированной — утроенному фазному напряжению. Соответственно дополнительные обмотки выполняются на номинальное напряжение Uном = 100 В и 100/3 В.
Номинальным напряжением ТV называется номинальное напряжение его первичной обмотки; это значение может отличаться от класса изоляции. Номинальное напряжение вторичной обмотки принимается равным 100, 100/3 и 100/3 В. Как правило, трансформаторы напряжения работают в режиме холостого хода.
Измерительные трансформаторы напряжения с двумя вторичными обмотками
Трансформаторы напряжения с двумя вторичными обмотками, кроме питания измерительных приборов и реле, предназначаются для работы на устройствах сигнализации замыканий на землю в сети с изолированной нейтралью или на защиту от замыканий на землю в сети с заземленной нейтралью.
Схема трансформатора напряжения с двумя вторичными обмотками показана на рис. 2,а. Выводы второй (дополнительной) обмотки, используемой для сигнализации или защиты при замыканиях на землю, обозначены ад и хд.
На рис. 2,6 приведена схема включения трех таких трансформаторов напряжения в трехфазной сети. Первичные и основные вторичные обмотки соединены в звезду. Нейтраль первичной обмотки заземлена. На измерительные приборы и реле от основных вторичных обмоток могут быть поданы три фазы и нуль. Дополнительные вторичные обмотки соединены по схеме разомкнутого треугольника. От них на устройства сигнализации или защиты подается сумма фазных напряжений всех трех фаз.
Рис. 2. Трансформатор напряжения с двумя вторичными обмотками. а — схема; б — включение в трехфазную цепь; в — векторная диаграмма
Сумма векторов Uaд, U b д и Ucд получена путем их совмещения соответственно схеме соединения дополнительных обмоток, при этом принималось, что стрелки векторов как первичных, так и вторичных напряжений соответствуют началам обмоток трансформатора.
Результирующее напряжение 3U0 между концом обмотки фазы С и началом обмотки фазы А па диаграмме равно нулю.
Напряжение, обеспечивающее надежную работу реле, приключаемых к цепи разомкнутого треугольника, возникает только при замыканиях на землю со стороны первичной обмотки трансформатора напряжения. Так как замыкания на землю связаны с прохождением тока через нейтраль, появляющееся при этом напряжение на выходе разомкнутого треугольника согласно методу симметричных составляющих называют напряжением нулевой последовательности и обозначают 3U0. В этом обозначении цифра 3 указывает, что напряжение в данной цепи является суммарным для трех фаз. Обозначение 3U0 применяется также и для выходной цепи разомкнутого треугольника, подаваемой на реле сигнализации или защиты (рис. 2,6).
Наибольшее значение напряжение 3U0 имеет при однофазном замыкании на землю. При этом следует иметь в виду, что максимальная величина напряжения 3U0 в сети с изолированной нейтралью значительно, больше, чем в сети с заземленной нейтралью.
Распространенные схемы включения измерительных трансформаторов напряжения
Для обнаружения «земли» по этим вольтметрам они должны показывать величины первичных напряжений между фазами и землей (см. векторную диаграмму на рис. 3,6). Для этого нуль обмоток ВН заземляется и вольтметры включаются на вторичные фазные напряжения.
Особенность схемы открытого треугольника это недоиспользование мощности трансформаторов, так как мощность такой группы из двух трансформаторов меньше мощности группы из трех соединенных в полный треугольник трансформаторов не в 1,5 раза, а в √ 3 раз.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
6-2. Трансформаторы напряжения
Трансформатор напряжения по принципу действия и конструктивному выполнению аналогичен обычному силовому трансформатору. Как показано на рис. 6-1, трансформатор напряжения состоит из стального сердечника (магнитопровода) С, собранного из тонких пластин трансформаторной стали, и двух обмоток — первичной и вторичной, изолированных друг от друга и от сердечника.
Первичная обмотка имеющая очень большое число витков (несколько тысяч) тонкого провода, включается непосредственно в сеть высокого напряжения, а к вторичной обмотке
, имеющей меньшее количество витков (несколько сотен), подключаются параллельно реле и измерительные приборы.
Под воздействием напряжения сети по первичной обмотке проходит ток, создающий в сердечнике переменный магнитный поток Ф, который, пересекая витки вторичной обмотки, индуктирует в ней э. д. с. Е, которая при разомкнутой вторичной обмотке (холостой ход трансформатора напряжения) равна напряжению па ее зажимах U2X..X,
Напряжение U2X..X во столько раз меньше первичного напряжения U1 во сколько раз число витков вторичной обмотки меньше числа витков первичной обмотки
:
Отношение чисел витков обмоток называется коэффициентом трансформации и обозначается nH:
Введя такое обозначение, можно написать:
Если ко вторичной обмотке подключена нагрузка в виде реле и приборов, то напряжение на ее зажимах U2 (pис. 6-1) будет меньше э. д. с. на величину падения напряжения в сопротивлении вторичной обмотки. Однако поскольку это падение напряжения невелико, пересчет первичного напряжения на вторичное и вторичного на первичное производится без учета падения напряжения по формулам:
На паспортах трансформаторов напряжения их коэффициенты трансформации указываются дробью, в числителе которой — номинальное первичное напряжение, а в знаменателе — номинальное вторичное напряжение. Так, напри-
мер, если на паспорте трансформатора напряжения написано 6 000/100, то это означает, что данный трансформатор напряжения предназначен для установки в сети с номинальным напряжением 6 000 В и имеет коэффициент трансформации 60.
При включении однофазных трансформаторов напряжения на фазные напряжения начала первичных обмоток присоединяются к фазам, а концы собираются в нулевую точку. При включении трансформаторов напряжения на междуфазные напряжения начала первичных обмоток подключаются к начальным фазам в порядке их электрического чередования друг за другом. Например, при включении двух однофазных трансформаторов напряжения на междуфазные напряжения АВ и ВС (по схеме рис. 6-3, б) при чередовании фаз А, В, С первый трансформатор напряжения включается началом первичной обмотки к фазе А, концом — к фазе В, а второй — началом к фазе В и концом — к фазе С. При маркировке выводов вторичных обмоток трансформаторов напряжения за начало а принимается тот вывод, из которого ток выходит, в то время когда в первичной обмотке ток проходит от начала А к концу X, как показано на рис. 6-2. Иными словами, если на первичной стороне ток входит в начало А, то однополярным выводом, т. е. началом вторичной обмотки а, будет тот ее вывод, из которого в этот момент ток выходит.
При маркировке и включении обмоток по такому правилу направление тока в реле, как показано на рис. 6-2, при включении реле через трансформатор напряжения останется таким же, как и при включении непосредственно в сеть.
Трансформаторы напряжения бывают трехфазные и однофазные. Последние в зависимости от назначения соединяются между собой в различные схемы.
На рис. 6-3 и 6-4 приведены основные схемы соединения однофазных трансформаторов напряжения.
На рис. 6-3, а дана схема включения одного трансформатора напряжения на междуфазное напряжение. Эта схема применяется, когда для защиты или измерений нужно только одно междуфазное напряжение.
На рис. 6-3, б приведена схема соединения двух трансформаторов напряжения в открытый треугольник (или неполную звезду). Эта схема, получившая широкое распространение, применяется, когда для зашиты или измерений нужно иметь два или три междуфазных напряжения.
На рис. 6-3, в приведена схема соединения трех трансформаторов напряжения в звезду. Эта схема также получила широкое распространение и применяется, когда для защиты или измерений нужны фазные напряжения или же фазные и междуфазные напряжения одновременно.
На рис. 6-3, г приведено соединение трех трансформаторов напряжения по схеме треугольник — звезда. Эта схема обеспечивает повышенное напряжение на вторичной стороне, равное
Такое напряжение необходимо для питания электромагнитных корректоров напряжения устройств автоматического регулирования возбуждения генераторов.
На рис. 6-4 представлена схема соединения трансформатора напряжения, имеющего две вторичные обмотки. Первичная обмотка и основная вторичная обмотка соединены в звезду, т. е. так же, как на рассмотренной выше схеме рис. 6-3, в. Дополнительная вторичная обмотка соединена в схему разомкнутого треугольника (на сумму фазных напряжений). Такое соединение применяется для получения напряжения нулевой последовательности (см. § 6-7), необходимого для включения реле напряжения и реле направления мощности защиты от однофазных к. з. в сети с заземленными нулевыми точками трансформаторов и для сигнализации при однофазных замыканиях на землю в сети с изолированными нулевыми точками трансформаторов.
Как известно, сумма трех фазных напряжений в нормальном режиме, а также при двухфазных и трехфазных к. з. равна нулю. Поэтому в указанных условиях напряжение между точками О1 — О2 на рис. 6-4 равно нулю (практически между этими точками имеется небольшое напряжение 0,5—2 В, которое называется напряжением небаланса).
При однофазном к. з. в сети с заземленными нулевыми точками трансформаторов (сети 110 кВ и выше) фазное напряжение поврежденной фазы становится равным нулю, а геометрическая сумма фазных напряжений двух неповрежденных фаз оказывается равной фазному напряжению. В сети с изолированными нулевыми точками трансформаторов (сети 35 кВ и ниже) при однофазных замыканиях на землю напряжения неповрежденных фаз становятся равными междуфазному напряжению, а их геометрическая сумма оказывается равной утроенному фазному напряжению.
Для того чтобы в последнем случае напряжение на реле не превосходило номинального значения, равного 100 В, у трансформаторов напряжения, предназначенных для сетей, работающих с изолированными нулевыми точками трансформаторов, вторичные дополнительные обмотки, соединяемые в схему разомкнутого треугольника, имеют повышенный в 3 раза коэффициент трансформации, например 6 000 /100/3.
Напряжение нулевой последовательности может быть также получено от специальных обмоток трехфазных трансформаторов напряжения.
В конструкции, показанной на рис. 6-5, специальные обмотки расположены на крайних стержнях пятистержне-вого сердечника и соединены последовательно между собой.
В нормальном режиме, а также при двухфазных и трехфазных к. з., когда сумма фазных напряжений равна нулю, магнитный поток в крайних стержнях отсутствует, и поэтому напряжения на специальных обмотках нет. При однофазных к. з. или замыканиях на землю сумма фазных напряжений не равна нулю. Поэтому магнитный поток замыкается по крайним стержням и индуктирует напряжение на специальных обмотках.
В другой конструкции, показанной на рис. 6-6, имеется дополнительная вторичная обмотка, расположенная на основных стержнях и соединенная в схему разомкнутого треугольника.
При включении первичных обмоток трансформаторов напряжения на фазные напряжения они соединяются в звезду, нулевая точка которой обязательно соединяется с землей (заземляется), как показано на рис. 6-3, в, 6-4, 6-5, 6-6. Заземление первичных обмоток необходимо для того, чтобы при однофазных к. з. или замыканиях на землю в сети, где установлен трансформатор напряжения, реле и приборы, включенные на его вторичную обмотку, правильно измеряли напряжение фаз относительно земли.
Вторичные обмотки трансформаторов напряжения подлежат обязательному заземлению независимо от схемы их соединений. Это заземление является защитным — обеспечивающим безопасность персонала при попадании высокого напряжения во вторичные цепи. Обычно заземляется нулевая точка звезды (рис. 6-3, в и г) или один из фазных проводов (рис. 6-3, а и б, рис. 6-4).
Первичные обмотки трансформаторов напряжения до 35 кВ подключаются к сети через предохранители высокого напряжения и ограничивающие сопротивления. Назначением этих предохранителей является быстрое отключение от сети поврежденного трансформатора напряжения. Ограничивающие сопротивления устанавливаются для снижения величины тока к. з., если отключающая способность предохранителей недостаточна.
Для защиты обмоток трансформатора напряжения от длительного прохождения тока к. з. при повреждениях во вторичных цепях устанавливаются предохранители низкого напряжения или автоматы. Конструкции предохранителей и плавких вставок должны быть надежными, исключающими обрывы, потерю контакта и другие повреждения, приводящие к исчезновению напряжения на защите. Предохранители, и автоматы должны быть правильно выбраны с учетом отстройки от максимального тока нагрузки, который может через них проходить (см. гл. 2).
Исчезновение напряжения от трансформатора напряжения вследствие неисправностей предохранителей воспринимается защитой так же, как понижение напряжения при к. з. в защищаемой сети, и приводит к ее неправильному действию. Поэтому защиты, реагирующие на понижение или исчезновение напряжения либо выполняются так, что отличают к. з. от неисправности во вторичных цепях, либо снабжаются специальными блокировками.
На рис. 6-7 приведены в качестве примера две схемы включения защиты минимального напряжения. На рис. 6-7, а два реле минимального напряжения включены на разные междуфазные напряжения трансформатора напряжения, их контакты соединены последовательно. При такой схеме включения защита не может сработать ложно при перегорании одного из предохранителей. Однако ложное действие может все же произойти при повреждении единственного трансформатора напряжения или при одновременном перегорании двух предохранителей. Более надежна в этом отношении схема на рис. 6-7, б, в которой так же используются два реле минимального напряжения, но включенные на разные трансформаторы напряжения.
На рис. 6-8 приведена схема включения специальной блокировки, предотвращающей ложное действие защиты при нарушении цепей от трансформатора напряжения. Блокировка типа КРБ-11 (Б на рис. 6-8) состоит из трех конденсаторов С одинаковой емкости, реле напряжения Но и токового реле То. Конденсаторы С соединены в звезду для создания искусственной нулевой точки и включены на фазные напряжения. В провод, соединяющий нулевую точку конденсаторов с нулевой точкой вторичной обмотки трансформатора напряжения, включена обмотка реле напряжения Но, через размыкающий контакт которого подается оперативный ток на комплект защиты КЗ.
Цепь обмотки реле Но проходит через размыкающий контакт токового реле То, обмотка которого включена в нулевой провод трансформаторов тока, питающих комплект защиты КЗ от междуфазных коротких замыканий.
Нормально, когда сумма фазных напряжений равна нулю, напряжения нулевых точек звезды конденсаторов и вторичной обмотки трансформатора напряжения также равны нулю и поэтому ток в обмотке реле Но отсутствует. При перегорании одного или двух любых предохранителей напряжение нулевой точки звезды конденсаторов станет равным сумме напряжений оставшихся фаз, а напряжение нулевой точки звезды вторичной обмотки трансформатора напряжения останется равным нулю. В результате под воздействием напряжения, возникшего между нулевыми точками, через обмотку реле Но пойдет ток и реле, сработав, нижним контактом снимет оперативный ток с комплекта защиты КЗ, а верхним подаст сигнал.
При перегорании предохранителей всех трех фаз блокировка рассматриваемого типа не работает, что является ее органическим недостатком. При двухфазном к. з. на землю на защищаемой линии симметрия фазных напряжений, подводимых к звезде конденсаторов, нарушается, и блокировка может сработать и вывести защиту из действия. Для предотвращения такого неправильного действия блокировки предусмотрено токовое реле То, которое в рассматриваемом случае срабатывает и, размыкая цепь обмотки реле Но, препятствует его срабатыванию.
Для сетей, работающих с изолированными нулевыми точками трансформаторов, выпускается блокировка типа КРБ-12, работающая на аналогичном принципе (см. § 6-7). Для сетей напряжением 500 кВ выпускается более сложная блокировка, действующая при перегорании также и трех предохранителей [Л. 5].
Трансформаторы напряжения имеют две погрешности:
1) погрешность в напряжении (или в коэффициенте трансформации), под которой понимается отклонение действительного коэффициента трансформации от номинального;
2) погрешность по углу, под которой понимается угол сдвига вторичного напряжения относительно первичного.
В зависимости от погрешностей трансформаторы напряжения подразделяются на классы точности. Допустимые погрешности в зависимости от класса точности приведены в табл. 6-1.
Кроме рассмотренных выше основных погрешностей, возникающих при трансформации первичного напряжения на вторичную сторону, на работу релейной защиты и точность измерений влияют также дополнительные погрешности от падения напряжения в цепях напряжения от трансформатора напряжения до места установки панелей защиты или измерений. Поэтому согласно требованиям ПУЭ [Л. 41] сечение жил кабелей должно выбираться так, чтобы падение напряжения в указанных цепях не превышало: 3% для релейной защиты, 1,5% для щитовых измерительных приборов и 0,5% и для счетчиков.