зачем в поезде регулятор громкости

Звуковые сигналы при движении поездов

Инструкция по сигнализации на промышленном железнодорожном транспорте устанавливает систему, когда звуковые сигналы при движении поездов для передачи приказов и указаний, относящихся к движению поездов и маневровой работе.

Сигналы служат для обеспечения безопасности движения, а также для четкой организации движения поездов и маневровой работы.

Сочетание звуков различной продолжительности

Звуковые сигналы поездов выражаются числом и сочетанием звуков различной продолжительности:

При маневрах применяются звуковые сигналы:
Разрешается локомотиву следовать управлением вперед: одним длинным звуком.
Разрешается локомотиву следовать управлением назад: двумя длинными звуками.
Звуковые сигналы при маневрах подаются ручным свистком или духовым рожком.
Сигналы при маневрах должны повторяться свистками локомотива, подтверждающими принятие их к исполнению.

Звуковые сигналы при движении поездов
Три коротких • • • «Стой
Один длинный — «Отправиться поезду
Три длинных и один короткий — — — • «Прибытие поезда на станцию не в полном составе

Следование двойной тягой:
Один короткий • Требование к машинисту второго локомотива «уменьшить тягу
Два коротких • • Требование к машинисту второго локомотива «увеличить тягу
Два длинных и два коротких — — • • Требование «Опустить токоприемник.

Звуковые сигналы при движении поездов с подталкивающим локомотивом:
Два коротких • • Требование «начать подталкивание
— повторяет сигнал машинист подталкивающего
Один короткий, один длинный и один короткий • — • Требование «прекратить подталкивание, но не отставать от поезда
Четыре длинных — — — — Требование «прекратить подталкивание и возвратиться обратно
При следовании поезда двойной тягой с подталкивающим локомотивом машинист второго локомотива повторяет все сигналы вслед за подачей их с подталкивающего локомотива.

Оповестительный сигнал подается как один длинный свисток — в случаях:
приближения поезда к станциям (постам), переносным и ручным сигналам, требующим уменьшения скорости, сигнальным знакам «С», выемкам, кривым участкам пути, тоннелям;
при встрече поездов на перегонах: первый сигнал — при приближении к встречному поезду, второй – при подходе к хвостовой части;
при приближении к находящимся на пути людям и в других случаях, требующих оповещения о приближении поезда.

Сигнал бдительности подается одним коротким и одним длинным свистком локомотива
• — и периодически повторяется:
при проследовании проходного светофора с красным огнем, а также с непонятным показанием или погасшим, после стоянки перед ним и при дальнейшем следовании по блок-участку;
при подходе к входному светофору с лунно-белым мигающим огнем пригласительного сигнала и во всех других случаях приема поезда на станцию при запрещающем показании или погасших основных огнях входного светофора;
при приеме поезда по неправильному пути (при отсутствии входного светофора по этому пути). Этот сигнал должен подаваться и при дальнейшем следовании по горловине станции;
при подходе к проходному светофору с красным огнем, имеющему условно-разрещающий сигнал, и дальнейшем следовании по блок-участку.

Сигналы тревоги подаются свистками локомотивов, сиренами, ударами в подвешенные металлические предметы.
Сигнал «Общая тревога подается группами из одного длинного и трех коротких звуков:
— • • • — • • • — • • •
при обнаружении на пути неисправности, угрожающей безопасности движения;
при остановке поезда в снежном заносе, при разрыве поезда, крушении поезда и в других случаях, когда требуется помощь.

Сигнал «Пожарная тревога подается группами из одного длинного и двух коротких звуков:
— • • — • • — • •
Сигнал общей и пожарной тревоги подаются при необходимости каждым работником железнодорожного транспорта.

Значение звуковых сигналов днем и ночью одно и то же.

Источник

Почему поезда так часто гудят? Для чего применяется гудок?

Опубликовано 26.07.2019 · Обновлено 01.11.2021

Мне часто задают вопрос: зачем локомотивы гудят?

Этот вопрос вроде-бы и простой, но затрагивает очень серьезную тему – звуковые сигналы, без которых работа железных дорог была-бы невозможной и, откровенно, далекой от безопасности!

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкостиПневматический свисток

После этого случая был придуман и установлен на всех паровозах паровой гудок, громкий такой, старое поколение помнит. Сейчас все гудки на локомотивах гудят от сжатого воздуха, не так звонко и мелодично, но очень громко. Все локомотивы, электропоезда, дизель-поезда и все самоходные машины, двигающиеся по железнодорожным путям, имеют два типа гудка: тифон – звуковой сигнал большой громкости, чтобы было слышно, как говорится, за версту и свисток – звуковой сигнал небольшой громкости, для технических и предупредительных нужд.

А что это за нужды такие? Звуковые сигналы имеют каждый свое значение и обязательны для выполнения и предупреждения всех причастных работников, о каком-то действии, со стороны локомотива или поезда! Так вот! Звуковые сигналы также регламентируются «Инструкцией по сигнализации на железнодорожном транспорте Российской Федерации» и обязательны к неукоснительному соблюдению!

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкостиСвисток тепловоза

Неверно поданный сигнал может создать очень серьезную ситуацию и даже стоить человеческой жизни! Такое бывает, особенно при маневровой работе. На станциях очень много категорий работников, это и локомотивные бригады, и дежурные по станции, и составители поездов, и осмотрщики вагонов и многие другие, все они задействованы в едином производственном процессе формирования, подготовки, приема и отправки поездов, и вся их работа во многом выполняется по звуковым сигналам!

Вот сигналы свистком или тифоном, для примера: один длинный – поезд или локомотив, отправляется, заметьте, вперед; два длинных – поезд или локомотив сейчас будет двигаться назад, а вот, та-же гамма этих сигналов при проверке автотормозов: один короткий свисток – машинист производит торможение; два коротких свистка – отпуск тормозов и ими руководствуются осмотрщики вагонов. Три коротких сигнала – поезд или локомотив остановился. Вот как много всего интересного. Ну и конечно подать сигнал тифоном – это предупредить зазевавшегося человека или выскочивший на переезд автомобиль, «не лезь под колеса, убегай немедленно с пути, если дорога жизнь, убирайся с переезда, я еду!» Вот какое огромное значение имеют гудки! Без них – никуда!

Источник

Регулятор громкости. Каким он должен быть?

В дополнении к ветке «о темброблоках» ( http://dom.hi-fi.ru/forum/18/56480)
наверное полезно будет и обсудить тему о регуляторах громкости.

Для «затравки» обсуждения привожу выдержку из журнала Cалон AV №8 от 2006г.

Самым совершенным, с нашей точки зрения, является «то-
ковый» регулятор громкости японской компании Accuphase.
Она предложила чрезвычайно оригинальное и остроумное решение для своих усилителей, которое разом снимает большинство отмеченных выше проблем. Принцип работы регулятора AAVA (Accuphase Analog Varigain Amplifier), установленного в предварительных усилителях и интегральниках, состоит в следующем. Звуковой сигнал с симметричного входа подается на буферные каскады, которые предназначены для согласования входного импеданса предварительного усилителя с источниками звуковых сигналов. К выходу буферов параллельно подключены 16 преобразователей «напряжение-ток», коэффициенты преобразования
каждого из которых относительно соседнего отличается вдвое.
Таким образом, на выходах этих I/V-конверторов получаются токи входного сигнала,ступенчато изменяющихся в соотношении:
У2; (У2)2; (У2)3 (%)»; (%)и.
Они коммутируются полупроводниковыми ключами в любой комбинации (всего их возможно 65536) ко входу преобразователя «ток-напряжение», на выходе которого опять получатся напряжение звукового сигнала. Поскольку его величина определяется величиной тока на входе, для изменения громкости достаточно подключить к преобразователю требуемое количество источников
тока. Коммутацией управляет специальный процессор по зашитой в его ПЗУ программе, а он, в свою очередь, получает команду от контроллера с ручкой Volume.
Несмотря на кажущуюся сложность регулятора AAVA,
конструктивно он реализован на двух микросхемах. Благодаря использованию 16-разрядного квантования уровня тока обеспечивается очень плавное изменение напряжения на выходе с шагом 0,07 мВ при максимальной величине выходного сигнала 5 В. Очевидно, что для любого практического применения этого более чем
достаточно, ведь во всем рабочем диапазоне громкостей на слух не заметно ни малейших признаков дискретности.
По сравнению с регуляторами громкости других типов схема AAVA обладает следующими преимуществами:

— отсутствие проникания сигнала из канала в канал и полная
идентичность их регулировок;
— отсутствие шорохов и тресков при изменении громкости;
— постоянство входного и выходного импедансов схемы и их ста-
бильность во времени,
— независимость АЧХ регулятора от уровня громкости;
— очень малые шумы и искажения.
И главное, такой регулятор по сути своей является аналоговым,
цифра используется только для управления ключами. Кстати, преобразование тока в напряжение и обратно, похоже, фирменная «фишка» этой фирмы. Например, в интегральных усилителях Accuphase применяется обратная связь по току. В отличие от традиционной ООС по напряжению она обеспечивает минимальную фазо-
вую задержку сигнала в петле, плюс к тому значительно менее чувствительна к изменению импеданса нагрузки по частоте. «.

Источник

ТОНКОМПЕНСИРОВАННЫЙ РЕГУЛЯТОР ГРОМКОСТИ

В литературе много схем аналоговых тонкомпенсированных регуляторов громкости (ТКРГ). Однако все они имеют свои недостатки – о чем так же отражено в литературе, часть которой в списке в конце. В этой статье сделана попытка создать улучшенный ТКРГ, призванный максимально устранить недостатки существующих схем и поднять качество звучания при регулировке громкости. Причем регулировать громкость будет простой переменный резистор без отводов. Вот схема предлагаемого ТКРГ (рис.1):

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкости

Рис.1. Схема тонкомпенсированного регулятор громкости.

ТКРГ состоит из двух узлов. На операционном усилителе (ОУ) А1.1 построен собственно регулятор громкости с пропорциональной добавкой ВЧ и НЧ в сигнал при уменьшении громкости (тонкомпенсация). Смешение сигналов (при включенной тонкомпенсации) происходит в точке «Ж». Причем добавляемые сигналы ВЧ и НЧ можно настраивать по частоте и амплитуде с целью получения идентичности АЧХ регулятору тембра и кривым равной громкости.

При среднем положении регулятора R4 громкость будет средней. В точку «Ж» приходят все три смешиваемых сигнала: с бегунка R4 (основной сигнал) + с ВЧ цепи + с НЧ цепи и, собственно, смешиваются. Суммарный сигнал будет со средней добавкой ВЧ и НЧ. В левом положении бегунка R4 подача основного сигнала в точку «Ж» будет минимальной, так как выход ОУ А1.1 (основной сигнал) пойдет в точку «Ж» через всю резистивную дорожку R4, а подача ВЧ и НЧ остается прежней – то есть в суммарном сигнале становится меньше основного сигнала и больше ВЧ и НЧ. В правом же положении бегунка R4 цепи добавки ВЧ и НЧ замыкаются через R9 бегунком R4 и практически не влияют на основной сигнал – никакой добавки НЧ и ВЧ в основной сигнал нет. Соответственно получается плавная пропорциональная тонкомпенсация по уровню громкости.

На ОУ А1.2 построен усилитель-смеситель с коэффициентом усиления необходимым для согласования с последующим устройством. Изменяя номинал резистора R11 можно в широких пределах регулировать усиление ТКРГ. Номинал резисторов R9+R10 взят как приемлемая нагрузка для ОУ А1.1 и резистора R4, ведь на инвертирующем входе 6 ОУ А1.2 всегда почти нулевой потенциал. Если будет использоваться старая микросхема ОУ, то резисторы R9 + R10 необходимо увеличить до 5 кОм (суммарно), не менее. Иначе ОУ возможно будет перегружаться и искажать сигнал.

Основным достоинством предлагаемого ТКРГ является возможность подстройки его АЧХ под АЧХ регулятора тембра. Эта подстройка нужна по трем причинам.

Это триединое требование соответствия АЧХ ТКРГ регулятору тембра затрудняет возможность применения обычных ТКРГ, использующих вырезание частот одной или несколькими ветками (конденсатор + резистор) в качественной аппаратуре – как на Рис. 2.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкости

Рис.2 ТКРГ на резисторах с отводами (из интернета).

Про их недостатки написано в [3]. АЧХ у них волнистая, сильно меняется от положения бегунка (сопротивления) переменного резистора. Да и не соответствует ни регулятору тембра, ни кривым равной громкости. Я, например, всегда слышу момент прохождения бегунка мимо отвода на тонкомпенсацию при регулировке громкости на УНЧ, где резистор с отводом (даже ALPS).Так же волны будут давать ТКРГ, представленные в [1], [3], [5], [7], [10].

Конечно, кроме соответствия АЧХ ТКРГ регулятору тембра, необходимо, чтобы АЧХ тонкомпенсации соответствовала одновременно и кривым равной громкости (рис.3). Благо, что между графиками кривых равной громкости и РТ нет принципиальных, антагонистических противоречий и две ветки – НЧ и ВЧ могут обеспечить АЧХ усредненную между кривыми равной громкости и РТ.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкости

Рис.3 График кривых равной громкости, приведенный к уровню 90 фон (из [1]).

Наверное самый большой недостаток многих ТКРГ (во всяком случае из моей практики) – это трески и хрипы при регулировке громкости. Особенно при минимальной громкости. Вероятно в том числе и для исключения этих тресков даже в промышленных усилителях ставился переключатель «Интим». Трески были в основном в ТКРГ, построенных по схеме рис.4 и вызывались слишком большим током через ползунок переменного резистора.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкости

Рис. 4 Схема ТКРГ на резисторе без отводов (взята из интернета).

В предлагаемой схеме рис.1 с уменьшением громкости уменьшается и амплитуда сигнала, идущего с выхода ОУ на цепи НЧ и ВЧ, а через них и на бегунок переменного резистора. Этот сигнал, а точнее ток, резистор на малой громкости запросто терпит. На большой громкости ток по бегунку так же небольшой, так как ограничивается резистором R9, R10.

Это – второе достоинство предлагаемого ТКРГ – снижение тресков и, соответственно возможность применения не самых дорогих переменных резисторов. Хотя отечественные переменные резисторы вряд ли вообще можно применять. Они трещат всегда.

Четвертым достоинством предлагаемого ТКРГ является равномерная и пропорциональная добавка тонкомпенсирующих частот НЧ и ВЧ по мере поворота (угла) переменного резистора. Это лучше, чем на резисторах с отводами или переключателях. То есть сохраняется необходимая частотная характеристика независимо от угла поворота переменного резистора. А ведь почти все указанные в ниже перечисленной литературе ТКРГ очень сильно искажают (изменяют) необходимую частотную характеристику при изменении громкости, так как меняется настройка частоты фильтров добавки НЧ или ВЧ от изменения сопротивления самого переменного резистора (участка до бегунка).

Пятым достоинством предлагаемого ТКРГ является то, что частотоформирующие цепи не находятся в обратной связи ОУ. В качественной аудиотехнике в обратной связи ОУ, на мой взгляд, не должно быть конденсаторов. Все фильтры и частотные корректоры должны быть только пассивными (как в предлагаемом ТКРГ). Ну или требуется применять очень дорогие конденсаторы.

Теперь о кажущемся недостатке – это меньшая глубина тонкомпенсации НЧ, чем требуют кривые равной громкости рис.3. Однако мое мнение, что где-то в теории звука вкралась ошибка. Ведь кривые равной громкости составлены на основании восприятия человеческим ухом чистых тонов (одиночных частот). А музыкальный звук содержит спектр частот и именно как идет восприятие (громкость) нескольких рядом стоящих частот или участков НЧ не вполне понятно.

Мне не удалось найти информацию об этом, но представляется, что в реальной музыке нет смысла на малой громкости делать такой высокий подъем НЧ, как на рис.3. Это слишком много – слушается неестественно, да и создаются большие проблемы по схемотехнике (раньше пробовал – плохо получалось). Именно прослушивание показывает, что близкие частоты НЧ, их гармоники, как бы помогают друг другу быть услышанными. Да и многие усилители вообще не имеют тонкомпенсацию и люди же их слушают – и довольные. А кривые равной громкости требуют подъема низких частот на малой громкости в сотню раз! В сотню! – удивительно. Зачем?

На рис.5 представлен график АЧХ предлагаемого ТКРГ, снятый практически.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкости

Рис. 5 График АЧХ ТКРГ.

О назначении элементов схемы. Резистор R8 регулирует глубину тонкомпенсации. Может быть в пределах 10…18 кОм. При 10 кОм глубина тонкомпенсации слишком большая. При 18 кОм несколько маловата. Но, конечно, регулировка этого резистора повлияет и на ВЧ цепь. Придется корректировать и С3, R6. Конденсатор С4 сдвигает частоту НЧ. Если звуковые колонки большие, то ставить 0,15 мкФ, если маленькие, то 0,1 мкФ или меньше. Конденсатор С3 – уровень добавки ВЧ. Его регулировка в последнюю очередь. Резистором R11 устанавливается усиление ТКРГ под дальнейшие узлы. Может меняться в очень широких пределах.

Вместо просто ОУ А1.2 может применяться цельный усилитель например на наушники или небольшие динамики. У меня на месте А1.2 был усилитель на наушники. Работала такая связка неплохо.

Конденсаторы и резисторы лучше использовать качеством повыше – об этом много и лучше написано в интернете. Очень рекомендую в качестве ОУ использовать LM4562 – его звук просто ласкает слух – значительно лучше, чем у всех стареньких аудио ОУ.

Входное сопротивление ТКРГ равно сопротивлению резистора R1. Если предшествующий каскад относительно мощный, то сопротивление R1 можно уменьшить. Тогда динамический диапазон регулировки громкости еще расширится. Резистор R2 является «предохранителем» от тресков, если бегунок переменного резистора вдруг потеряет контакт. Например самые дешевые переменные резисторы с Алиэкспресса (Рис.6 слева) ни на что не годятся – они дают потрескивания на краях регулировки. А, вот, недорогие резисторы с отводом на тонкомпенсацию с того же Алиэкспресса уже работают получше (вторые на рис.6). Их можно ставить на тембр и, за неимением лучшего, на громкость. Третий резистор на рис.6 с маркировкой «WL» подойдет на тембр, но не на громкость. Резисторы подороже везде подойдут, в т.ч. который на рис.6 справа, даже не ALPS.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкости

Рис. 6 Некоторые опробованные переменные резисторы.

Специально для точного подгона номиналов резисторов и конденсаторов, для возможности согласования с другими узлами и для оценки работы данного ТКРГ в составе полного усилителя пришлось собрать полный усилитель по схеме рис.7.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкости

Рис. 7 Схема полного усилителя с предлагаемым ТКРГ (в центре).

На рис. 8 представлено как реализован ТКРГ практически в усилителе по схеме рис.7.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкости

Рис. 8 Фото платы ТКРГ + РТ при регулировке.

Эскиз печатной платы представить не могу, так как она экспериментальная и не вполне соответствует окончательному варианту схемы.

Предлагаемый ТКРГ хорошо согласуется с «Регулятором тембра с псевдообходом» (Рис.7, слева. Статья есть в интернете). Такая связка становится как бы единым узлом без лишних связующих элементов. Так же ТКРГ хорошо согласуется с УНЧ из статьи «УНЧ с двойной термостабилизацией» (Рис.7, справа. Статья есть в интернете). УНЧ и ТКРГ имеют общий узел – усилитель напряжения. Соответственно несколько сокращено количество радиодеталей, усиления и ослабления сигнала по сравнению с обычным построением усилителей.

На рис. 9 показан момент прослушивания данного ТКРГ (в составе самодельного усилителя – серого цвета на фото) в сравнении с ТКРГ фирменного Грюндига R1. Там переменный резистор ALPS с одним отводом.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкости

Рис. 9 Сравнение ТКРГ предлагаемого и «Grundig R1».

Прослушивание показало, что предлагаемый ТКРГ:

Вообще, по жизни, мне пришлось собрать и слушать много различных ТКРГ и про предлагаемый скажу, что он получше. Тем же, кому «лишь бы танцевать» будет абсолютно безразлично какой применен ТКРГ. И еще хочется возразить тем, кто считает, что ТКРГ не нужен вообще: при включении ТКРГ переключателем на малой громкости восприятие музыки значительно облегчается, музыка становится более доходчивой, не надо прислушиваться к звукам, крутить тембр, музыка явно красивее. Да и добавка тембров до самого упора иногда не полностью компенсирует недостаток НЧ. А вот отсутствие ТКРГ требует постоянной подстройки тембра под конкретную громкость. Думаю, что тот, кто повторит именно предлагаемый ТКРГ со мной согласится и будет очень доволен его звуком и качеством регулировки.

Литература по тонкомпенсированному регулятор громкости

Вот пожалуй и все про данный ТКРГ. Буду рад прочитать отзывы, а так же об усовершенствованиях данного регулятора. Успехов в творчестве и да прибудет с нами совершенство! Желаю удачи, Волков Игорь, г. Пермь. 2021 г. Пишите на Volkus159@yandex.ru или Volkus159@gmail.com

Форум по обсуждению материала ТОНКОМПЕНСИРОВАННЫЙ РЕГУЛЯТОР ГРОМКОСТИ

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкостиПростая транзисторная схема робота следующего по нарисованной линии. Без микроконтроллеров и дорогих деталей.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкостиСхема гитарного комбо-усилителя с блоком эффектов на базе микросхем TDA2052, PT2399 и TL072.

зачем в поезде регулятор громкости. Смотреть фото зачем в поезде регулятор громкости. Смотреть картинку зачем в поезде регулятор громкости. Картинка про зачем в поезде регулятор громкости. Фото зачем в поезде регулятор громкостиСамодельный 8-канальный PWM MOSFET LED Chaser на микроконтроллере 16F628A.

Источник

Схема электронных регуляторов громкости

С развитием стереотехники резко обострилась одна из проблем аналоговой аппаратуры — низкое качество и небольшой ресурс работы переменных резисторов, служащих регуляторами громкости. И если для моноаппаратуры еще можно подобрать переменный резистор на замену вышедшему из строя, то для стерео, особенно импортной, это практически нереально.

Электронные регулятор громкости

Найти “примерно такой же” резистор очень сложно даже в крупных городах. Причем чаще всего “ломаются” резисторы регуляторов громкости. Регуляторы тембра и баланса используются реже и служат гораздо дольше. К счастью, полный выход из строя сдвоенного (“стерео”) переменного резистора случается крайне редко. Обычно хотя бы один из резисторов полностью или частично исправен. И, “зацепившись” за эту часть регулятора. можно “вылечить” все устройство!

При этом даже не придется переводить систему в монофонический режим—достаточно просто добавить специальную микросхему электронного регулятора громкости. Такие микросхемы сравнительно дешевы, почти не искажают звук и практически не требуют подключения внешних элементов. С их помощью автор в свое время вернул жизнь не одному десятку различных магнитол, и ни один владелец не остался разочарованным.

Знать, как именно устроены подобные микросхемы — совершенно не обязательно (фактически, это операционный усилитель с электрически изменяемым коэффициентом усиления), нужно только помнить, что при уменьшении напряжения на регулирующем входе громкость обычно также уменьшается. И даже если переменный резистор “восстановлению не подлежит” — тоже не все потеряно. В таком случае можно использовать цифровой регулятор громкости, который управляется кнопками.

Такие регуляторы бывают двух типов: автономные и требующие использования дополнительного процессора. Первые (например, КА2250, ТС9153) регулируют только громкость. “Качество регулировки” — довольно скверное, но их стоимость сравнительно невелика. “Процессорные” регуляторы раза в два дороже автономных, но гораздо “круче”: и регулировка более линейная, и, помимо регулировки громкости, можно регулировать тембр, баланс, звуковые эффекты (псевдостерео — стерео из моносигнала, как у TDA8425 или псевдоквадра-стерео в микросхемах серии ТЕАбЗхх).

Есть также селектор каналов на входе и некоторые другие “примочки”. Но распространение таких регуляторов, даже несмотря на весьма выгодное соотношение цена- качество, ограничивает необходимость использования внешнего, заранее запрограммированного процессора. Специализированные запрограммированные процессоры для работы с подобными микросхемами автор в продаже не встречал.

Большинство микросхем с электронной регулировкой громкости предназначены для работы в кассетном магнитофоне. Они имеют пару чувствительных и малошумящих предварительных усилителей, пару усилителей мощности с электронной регулировкой громкости, и рассчитаны на низковольтное питание (1,8…6,0 В при потребляемом токе около 10 мА).

Схема регулятора громкости на микросхеме TA8119P

Таковы микросхемы ТА8119Р ф.TOSHIBA (рис.1) и ВАЗ520 ф.POHM(рис.2). Как видно из рисунков, отличаются они только количеством выводов, а электрические характеристики у них практически совпадают. Кстати, ИМС ТА8119 выпускается только в DIP-корпусе для монтажа в отверстия. а ВА3520 — в DIP- и SOIC-корпусах (соответственно, ВА3520 и BA3520F, последняя—для поверхностного монтажа). Расстояние между рядами выводов у ТА8119 и SOIC-версии BA3520F — 7,5 мм. у ВА3520 в DIP-корпусе —10 мм.

Цифровой регулятор громкости на BA3520

Операционные усилители (ОУ) внутри — обычные, с той лишь разницей, что некоторые резисторы обратной связи уже установлены в микросхеме. Выходной ток предварительных усилителей — несколько миллиампер, выходных — около сотни миллиампер. На рисунках указаны рекомендуемые схемы включения, но, в принципе, ОУ можно включать по любой стандартной схеме, за исключением, разве что, дифференциальной.

Если слишком большое усиление не требуется, предваритепьные уси- лители можно не использовать, подав входной сигнал непосредственно на выходные усилители (их коэффициент усиления при максимальной громкости — около 7). При этом входы предварительных усилителей желательно соединить с выходом REF микросхемы. Если использовать эти микросхемы для замены переменного резистора, сигнал на входы лучше подавать через резисторы сопротивлением около 100 кОм (для компенсации усиления выходных усилителей), как показано на рис.За.

И вообще, во всех схемах с использованием ВА3520 сигнал на входы оконечных усилителей лучше подавать через резисторы сопротивлением не менее 10 кОм. Это значительно уменьшает шумы на выходе (микросхема “не любит” слишком низкоомные источники сигнала), но выход предварительного усилителя микросхемы можно соединять со входом оконечного непосредственно. К ТА8119 это тоже относится, хотя выражено гораздо слабее.

Для более плавной регулировки громкости в микросхеме ТА8119Р и ВА3520, а также для устранения “шороха” при вращении движка переменного резистора, между движком и общим проводом рекомендуется включить конденсатор емкостью 1…10 мкФ (“+” к движку). При “частичной неисправности” переменного резистора (перегорела или истерлась дорожка возле одного из крайних выводов) можно “выкрутиться”, несколько усложнив схему.

Переменный регулятор громкости на резисторе, транзисторе, микросхеме

Если перегорел контакт, к которому подводится движок резистора для установки минимальной громкости, используется схема на рис.36 или рис.Зв. Здесь резисторы R1 и R2 образуют делитель напряжения. Но следует отметить, что напряжение в средней точке такого делителя никогда не уменьшится до нуля: при указанных номиналах резисторов оно превышает 0,3 В. т.е. “нулевая” громкость недостижима.

Для устранения этого недостатка в схему добавлен повторитель на транзисторе VT1. При таком напряжении он все еще закрыт (порог открывания — около 0.6 В). В схеме на рис.3б достичь максимальной громкости также невозможно из-за упомянутого выше падения напряжения на транзисторе (около 0,6 В). Поэтому лучше использовать схему, изображенную на рис.3в.

Источник питания (+5 В) должен быть стабилизированным — иначе громкость будет “плавать”. При настройке этой схемы, возможно, понадобится подобрать сопротивления R3 и R4 для получения максимальной громкости. Если же перегорел “верхний” вывод переменного резистора, схема для его “лечения” становится еще проще (рис.Зг). Источник питания тоже должен быть стабилизированным.

Но если переменный резистор “восстановлению не подлежит”, единственный выход — использование цифровых регуляторов. В принципе, такие регуляторы можно построить и на обычной цифровой логике, пропуская звуковой сигнал через микросхему цифро-аналогового преобразователя (ЦАП). Подобные схемы неоднократно публиковались в отечественной литературе начала 90-х годов, но дешевле и удобней воспользоваться специализированной микросхемой, например, КА2250 (Samsung) или ТС9153 (Toshiba).

Регуляторы громкости на ЦАПе КА2250, ТС9153

Эти микросхемы — полные аналоги по электрическим характеристикам и цоколевке (рис.4), отличия только в названии. Они являются 5-битным стереоЦАПом (шаг регулировки — 2 дБ) с довольно скзерными характеристиками регулирования и не очень сложной схемой управления. Что радует — крайне низкие искажения. По этому параметру микросхемы практически не отличаются от переменного резистора, естественно, если амплитуда входного сигнала не превышает 1,5…2,0 В и правильно разведены “земли”.

Также предусмотрено “запоминание” уровня громкости при отключении питания, но в ячейке ОЗУ, т.е. для подпитки самой микросхемы нужна батарейка или конденсатор с малой утечкой.
Для нормальной работы этих микросхем требуется внешний источник образцового напряжения (UREF)- Если у источника сигнала (предварительного усилителя) есть свое UREF. тогда просто подводим его к выводам 4,13 микросхемы (рис.4а). Если же его нет, “сооружаем” внешний делитель напряжения (R1-R2- С1 на рис.4).

В обоих случаях напряжение на выводах 4 и 13 должно быть на 1…2 В меньше напряжения питания, но выше 1…2 В относительно общего провода. Напряжение UREF d каждом канале может быть разным. Собственно регулятор громкости состоит из пары резисторных матриц, коммутируемых через высококачественные полевые транзисторы.

На рисунке эти матрицы обозначены как постоянные резисторы. Для нормального функционирования микросхемы обе матрицы должны быть соединены последовательно и, желательно, через разделительный конденсатор (С4). Так как матрицы содержат только резисторы, то, в принципе, “вход” и “выход” можно поменять местами (что иногда можно обнаружить даже в “фирменных” изделиях), но лучше этого не делать.

Цифровая часть микросхем состоит из генератора с внешними частотозадающими элементами КЗ-С7, двух кнопок SB1, SB2 и коммутатора на диодах VD1, VD2. Громкость изменяется при нажатии и удерживании соответствующей кнопки. У микросхем имеется цифровой выход. Ток через этот выход изменяется от 0 до 1,3 мА (с шагом 0,1 мА) при уменьшении/увеличении громкости. Вывод 7 микросхем служит для “выключения” — при “нуле” на этом входе генератор отключается, а потребляемый микросхемами ток уменьшается до минимума.

“Регулирующая” часть микросхем при этом работает как обычно, но изменять громкость невозможно. Для того, чтобы при отключении питания микросхема “запоминала” уровень громкости, ее желательно подключать так, как показано на рис.46. При отключении питания напряжение на входах “Uпит” уменьшается до нуля, одновременно снижается напряжение на выводе 7, и цифровая часть микросхемы “отключается”.

Сама микросхема при этом питается через батарейку, ее заряда хватает на десятки лет. В принципе, использовать батарейку не обязательно — достаточно одного конденсатора емкостью более 1000 мкф, но даже самый лучший конденсатор не “продержится” более недели. Конденсатор С2 служит для начального сброса микросхемы при включении питания, поэтому он обязателен и должен располагаться в непосредственной близости от выводов питания микросхемы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *