задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор

Теоретические сведения

1. Методика обучения математике детей с дисгармоничным развитием и трудностями в обучении призвана ответить на вопросы: «Кого учить? Зачем учить? Чему учить? Как учить?». Ответ на первый вопрос предполагает знание возраста, с которого следует начинать обучение ребенка с особыми нуждами элементам математики, систематическому курсу математики и т.п. Вопрос: «Чему учить?» требует определения специального содержания математического образования (знаний, умений, способов деятельности). Ответ на вопрос: «Как учить?» предполагает выявление методов, средств, форм обучения математике учащихся рассматриваемой категории. И, наконец, вопрос: «Зачем учить?» обращает внимание исследователей к выявлению целей обучения математике особенных детей.

Обучение математике детей с дисгармоничным развитием и трудностями в обучении – специально организованный, целенаправленный и управляемый процесс взаимодействия учителей и учеников, результатом которого является усвоение математических знаний, умений и навыков, формирование мировоззрения, развитие умственных сил в соответствии с индивидуальными возможностями учеников и поставленными целями.

Математическое образование – результат обучения математике особенных учащихся. Это система накопленных в процессе обучения математических знаний, умений, навыков, способов мышления, которыми овладел ученик.

Математическое воспитание – это специально организованное и целенаправленное и управляемое воздействие на ученика с целью формирования у него заданных качеств, осуществляемое в образовательных учреждениях средствами учебного предмета «математика».

Развитие – это процесс и результат количественных и качественных преобразований в организме и сознании человека. Оно связано с постоянными, непрекращающимися изменениями, переходами из одного состояния в другое, восхождением от простого к сложному, от низшего к высшему. Отклоняющееся развитие – то, которое не подчиняется общим законам, развитие индивидуальное, во многом нестандартное, всегда непонятное, сложное, противоречивое. Коррекция развития – направление развития ребенка в нормальное русло.

Сформулируем цели обучения математике особенных детей: овладение комплексом минимальных математических знаний и умений, необходимых для повседневной жизни, будущей профессиональной деятельности, продолжения обучения в старших классах общеобразовательной школы, изучения школьных предметов естественно-научного и гуманитарного циклов;развитие познавательных способностей учащихся, коррекция интеллектуальной деятельности и эмоционально-волевой сферы средствами математики на материале, отвечающем особенностям данной категории учащихся; создание условий для социальной адаптации учащихся.

Реализация при обучении математике общеобразовательных, коррекционно-воспитательных и практических целей в условиях специальных классов возможна лишь при осуществлении тесной связи преподавания математики другими учебными предметами. Задача учителя любого учебного предмета, в том числе и математики, – показать, что знания, полученные по какому-либо предмету, обогащают, дополняют знания по другим учебным предметам, тогда учащиеся получат не разобщенные знания, а систему знаний, которая может быть широко использована (Перова М.Н. Методика преподавания математики в специальной (коррекционной) школе. – М.: ВЛАДОС, 2001. – С. 12 – 18 (глава 2)).

2. Особенности усвоения математических знаний, умений и навыков учащимися с особыми нуждами (Перова М.Н. Методика преподавания математики в специальной (коррекционной) школе. – М.: ВЛАДОС, 2001. – С. 19 – 29 (глава 3)).

3. Методы обучения математике (Перова М.Н. Методика преподавания математики в специальной (коррекционной) школе. – М.: ВЛАДОС, 2001. – С. 38 – 62 (глава 5)).

Задания

1. Обоснуйте роль математического образования в развитии личности ребенка с особыми образовательными потребностями.

2. Перечислите основные особенности усвоения математических знаний, умений и навыков учащихся рассматриваемой категории.

3. Охарактеризуйте методы и приемы, которые используются при обучении математике особенных детей. Придумайте и опишите какой-либо свой метод обучения (или представьте модификацию уже известного метода).

Литература

1. Перова, М.Н. Методика преподавания математики в специальной (коррекционной) школе. – М., 2001. – С. 12-29, 38-62.

2. Протас, Е.С. Компенсирующее обучение в России: Сборник действующих нормативных документов и учебно-методических материалов.– М.: «Издательство АСТ – ЛТД», 1997. – 160 с.

3. Шевченко, С.Г. Коррекционно-развивающее обучение: Организационно-педагогические аспекты. – М., 2001. – 136 с.

Тема 4. Учебная программа, учебники и учебные пособия для учащихся с недостаточной с недостаточной математической подготовкой.

Примерное осдержание

1. Учебная программа по математике для учащихся классов с недостаточной математической подготовкой.

2. Анализ учебников, рекомендованных на текущий учебный год для изучения в специальных классах.

Источник

Зачем нужна математика

задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть картинку задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Картинка про задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор

Интересные факты про математику

Математика — это не только арифметические задачки. Это особый язык, который учит думать и рассуждать.

Математику называют междисциплинарной наукой, потому что она тесно связана с физикой, географией, геологией, химией. Социология и экономика неотделимы от математики, поэтому многие выводы из гуманитарных исследований опираются на математические понятия и логические законы.

Мир изменился и стал более технологичным, поэтому для любителей математики открыто множество вариантов профессионального развития.

Если 15 лет назад перспективными были сферы маркетинга и юриспруденции, то сегодня лидирует IT.

Профессиональная востребованность = понимание технологий + способность к решению нестандартных задач. И ключ к успеху — знание математики.

Что отличает математику от других школьных предметов:

Математика развивает мышление

Зачем заниматься физкультурой? Ответ простой — для здоровья и красоты тела.

Зачем учить математику? Ответ на этот вопрос кажется менее очевидным.

Математика — это гимнастика для ума. Хочешь не хочешь, но в процессе изучения будут крепчать качества, которые влияют на способ мышления. Для этого не обязательно учиться в профильном классе и участвовать в олимпиадах — решение даже самых простых задачек на пропорции или с процентами дает значительный эффект.

Обобщение, сокращение, анализ, систематизация, выделение важного, поиск закономерностей, формулирование гипотез и доказательство теорий — все это помогает развить мышление, сделать его более гибким. Точно также, как физические упражнения делают наше тело подвижнее, дают заряд сил и тренируют выносливость, математика тренирует ум.

Математика развивает интеллект. Набор правил и функций, которые мы изучаем в школе, делают наше мышление последовательным и логичным. Это отражается на умении рассуждать, формулировать мысли и замечать взаимосвязи. И самое увлекательное, что эти знания можно (и нужно!) применять не только в школе, но и в нестандартных ситуациях: чтобы выбрать самую выгодную банковскую карту, просчитать литры краски для ремонта или создать карту сокровищ, чтобы не забыть где они спрятаны.

Математика — универсальный международный язык, которым владеют почти все люди на земле. Эти знания пригодятся в любой стране и могут стать предметом интересной беседы.

Что понять, зачем учить математику в школе, только представьте, как приятно, когда в голове нет «каши» и путаницы в рассуждениях. На этот счет еще в прошлом веке великий учёный Ломоносов сказал: «Математику только затем учить надо, что она ум в порядок приводит». Как тут можно спорить? 😇

задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть картинку задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Картинка про задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор

Математика формирует характер

Чтобы правильно решать математические задачи, недостаточно одних лишь знаний. Нужны такие качества характера, как внимательность, настойчивость, последовательность, точность и аккуратность. Чем регулярнее мы практикуемся, тем сильнее укрепляются эти черты. И еще бонус: эти качества можно применять не только на уроках в школе, но и в других сферах жизни.

задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть картинку задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Картинка про задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор

Чем сложнее математические задачи, тем больше усилий и навыков нужно приложить для их решения.

Благодаря математике можно избавиться от вредных привычек:

Домысливать и не уметь объяснять, почему думаешь именно так

Оперировать фактами и точными терминами и быть более убедительным

Запоминать информацию механически, «зазубривать»

Оценивать, анализировать, строить аналогии и подвергать критике

Математика тренирует память

Ученые из Стэнфордского университета в США изучили, как человек решает математические задачи и выяснили, что взрослые люди используют для этого навык «доставать» из памяти ответы на основе прошлого опыта.

Почему учителя настаивают на регулярном посещении уроков? Дело не в их вредности, а в том, что при решении математических задач, мы «достаем» из памяти ответы на основе прошлого опыта. А чтобы этот опыт закрепить, нужно повторять материал и тренироваться в решении примеров. Только так можно запомнить все правила и формулы. 🤓

В журнале Nature Neuroscience в 2014 году опубликовали исследование про роль определенных областей головного мозга в развитии познавательной активности детей. Оказалось, что на интерес к знаниям оказывает сильное влияние гиппокамп — часть мозга, которая отвечает за память.

Интересный факт! Определенные области головного мозга влияют на развитие познавательной активности детей. Например, на интерес к знаниям влияет часть мозга, которая отвечает за память — гиппокамп. Поэтому:

Математика — волшебница, не иначе! Систематизируем все волшебные свойства и повторим, какие навыки можно развить с помощью математики:

Источник

Тесты для контроля знаний

задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть картинку задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Картинка про задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор

1. Процесс обучения математике является _________ методики преподавания математики.

2. Ядро методической системы обучения математике составляют цели, содержание, _______обучения.

3. Установите соответствие между названием учебно-методического комплекта и фамилией автора программы по математике.

1) Начальная школа ХХI века; 2) Планета знаний; 3) Школа 2000..; 4) Гармония;

5) Перспективная начальная школа; 6) Школа России.

а) Н.Б. Истомина; б) Л.Г. Петерсон в) В.Н. Рудницкая ;г) А.Л. Чекин, Л.П. Юдина и др.;

д) М.Г. Нефедова и др.; е) М.И. Моро и др.

4. Развивающая функция обучения математике заключается в :

1) совершенствовании вычислительной культуры младших школьников;

2) воспитании интереса к предмету; 3) развитии пространственного воображения;

4) становлении приемов умственной деятельности.

5. Задачи обучения математике в дидактической системе Л.В. Занкова можно сформулировать так:

1) способствовать продвижению учащихся в общем развитии;

2) формировать представление о математике как науке, обобщающей реально происходящие явления;

3) развивать алгоритмическое мышление школьников; 4) формировать конструкторские умения и навыки;

5) формировать знания, умения и навыки, необходимые для жизни и дальнейшего обучения.

6. Установите соответствие между понятием и компонентом содержания начального математического образования.

1) Дробные числа; 2) площадь 3) угол 4) равенство.

а) Величины; б) элементы геометрии; в) арифметический материал; г) элементы алгебры

д) элементы комбинаторики.

7. Данные суждения верны.

1) Внеклассная работа — это обязательные систематические занятия педагога с учащимися в свободное от основных занятий время.

2) Урок — это основная форма обучения младших школьников математике.

3) Занятия математического кружка способствуют воспитанию у младших школьников интереса к математике.

4) К видам внеклассной работы относятся: домашняя работа учащихся, групповая работа, фронтальная работа.

5) Основными методами обучения младших школьников математике являются наблюдение и эксперимент.

8. Установите последовательность этапов урока открытия нового знания в структуре технологии деятельностного метода «Школа 2000…» (Л.Г. Петерсон).

1) Постановка учебной задачи. 2) Открытие нового знания. 3) Самостоятельная работа с самопроверкой.

4) Первичное закрепление. 5) Актуализация опорных знаний. 6) Итог урока (рефлексия).

7) Самоопределение к учебной деятельности. 8) Включение в систему знаний и повторение.

9. Тип и структура урока математики в начальной школе определяются:

1) дидактическими задачами урока; 2) воспитательными задачами урока; 3) индивидуальными особенностями младших школьников; 4) местом урока в расписании;

5) степенью освоения учащимися содержания учебной темы.

10. Установите соответствие между этапом урока открытия нового знания и его дидактической целью.

1) Открытие нового знания. 2) Итог урока. 3) Организационный момент. 4) Актуализация опорных знаний. 5) Повторение. 6) Самостоятельная работа с самопроверкой.

а) Формирование навыков самоконтроля и самооценки; б) включение нового знания в систему знаний;

в) содержательная и мыслительная подготовка; г) положительное самоопределение к учебной деятельности;

д) рефлексия деятельности; е) проектирование и фиксация нового знания;

ж) изучение основного содержания учебной темы, формирование знаний, умений и навыков.

11. Домашняя работа по математике в начальной школе:

1) является формой самостоятельной работы учащихся; 2) выполняется учащимися по желанию;

3) подлежит обязательной проверке учителем или самопроверке;

4) содержит задания только занимательного характера; 5) направлена на тренировку учащихся в известных способах действий.

12. Функциями учебника как основного средства обучения математики в начальной

школе являются: 1) занимательная; 2) воспитательная; 3) актуализирующая;

4) информирующая; 5) мотивирующая; 6) развивающая.

Ответы: Общие вопросы методики преподавания математики

3. Ответ: 1в, 2д, 3б, 4а, 5г, 6е.

8 Ответ: 7, 5, 1, 2, 4, 3, 8, 6.

10. Ответ: 1е, 2д, 3г, 4в, 5б, 6а.

II Методика формирования у младших школьников вычислительной культуры

1. Дидактические цели урока по теме «Название и запись трехзначных чисел»

1) формировать способность к чтению и записи трехзначных чисел;

2) формировать способность к выражению трехзначных чисел в разных единицах счета;

3) тренировать мыслительные операции обобщения, сравнения, анализа;

4) формировать умение складывать и вычитать трехзначные числа столбиком;

5) актуализировать знания об образовании, записи и сравнении двузначных чисел.

2. В программах Н.Б. Истоминой и И.И. Аргинской числа первого десятка изучаются не по порядку, а по принципу схожести и трудности написания цифр. Данный

подход предусматривает формирование:

1) порядкового натурального числа;

2) натурального числа как меры величин;

3) количественного натурального числа;

4) натурального числа как результата счета и измерения.

3. Задания арифметического диктанта на проверку знаний по теме «Нумерация трехзначных чисел» могут быть следующими:

1) увеличь число 300 на 28;

2) запиши число, которое больше 516 на 1;

3) запиши число, содержащее 32 сотни, 32 десятка и 32 единицы;

4) запиши все трехзначные четные числа при помощи цифр 5, 6 и 8;

5) уменьшаемое 739, вычитаемое 186, найди разность;

6) запиши число, содержащее 3 сотни, 25 десятков, 25 единиц.

4. На этапе постановки учебной задачи педагог предлагает учащимся сосчитать

предметы, группируя их сначала по 5, затем по 6, 7, и записать результат счета числом. После выполнения этого задания учащиеся сделают выводы:

1) результат счета зависит от единицы счета;

2) единица счета должна быть единой;

3) десяток — новая счетная единица;

4) нельзя считать группами по 5, по 6, по 7;

5) число, полученное в результате счета, не зависит от выбранной единицы счета.

5. Установите последовательность обучения младших школьников пересчету

1) Пересчет изображений предметов, расположенных линейно.

2) Пересчет изображений предметов, расположенных хаотично.

3) Пересчет предметов и явлений, которые исчезают после воздействия на органы

чувств (хлопки, гудки, вспышки света).

4) Счет материальных объектов (счетных палочек, кубиков).

6. С целью дифференциации понятий число и цифра используются:

1) задания на составление чисел из заданных цифр;

2) знакомство с разными позиционными системами счисления;

3) знакомство с римской и славянской нумерацией;

4) изучение этимологии соответствующих слов;

5) работа с числовым отрезком, числа которого обозначены «волшебными» цифрами.

7. С целью формирования представлений о десятке как новой счетной единице

проводятся упражнения на:

1) счет однородных предметов группами по 2, 3, 4, 5, …, 10 элементов в каждой

2) измерение длин отрезков с помощью дециметра;

3) решение примеров вида а + b = 10;

4) осознание того, что результат счета зависит от единицы счета;

5) решение текстовых задач с ответом 10.

8. Установите логическую последовательность этапов изучения темы «Умножение многозначных чисел».

1) Умножение на круглые числа.

2) Умножение на однозначное число.

3) Умножение числа на произведение.

4) Умножение на двузначные и трехзначные числа.

5) Умножение числа на сумму.

9. Установите логическую последовательность изучения темы «Сложение и вычитание в пределах 10» по программе авторского коллектива под руководством

1) Прибавление (вычитание) единицы.

2) Переместительное свойство сложения.

3) Прибавление (вычитание) 2, 3, 4 по частям.

4) Вычитание чисел 5, 6, 7, 8, 9.

5) Прибавление 5, 6, 7, 8, 9 (в сумме до 10). Таблица сложения.

6) Взаимосвязь сложения и вычитания.

10. Ориентировочной основой приема табличного вычитания с переходом через десяток являются:

2) присчитывание по одному;

3) состав однозначных чисел;

4) вычитание из чисел второго десятка всех отдельных единиц, т.е. вычитание типа

5) правило вычитания суммы из числа.

11. На этапе постановки учебной задачи учитель предлагает ученикам разделить

круг на 8 равных частей и закрасить 3 части. Значит, тема этого урока:

1) деление с остатком; 2) дробь; 3) деление на равные части; 4) доли.

12. С целью создания затруднения при введении приема письменного деления на однозначное число целесообразно предложить ученикам выполнить (за ограниченный промежуток времени) деление в случаях:

1) 248 : 2; 2) 560 : 4; 3) 672 : 6; 4) 852 : 3; 5) 572 : 4; 6) 3600 : 2.

13. На этапе актуализации опорных знаний на уроке по теме «Табличное вычитание с переходом через десяток» используются задания на:

2) состав однозначных чисел;

3) отсчитывание по 1;

4) вычитание из чисел второго десятка всех отдельных единиц;

5) правило вычитания суммы из числа.

14. На этапе «Самостоятельная работа с самопроверкой» на уроке на тему «Умножение двузначного числа на однозначное» можно использовать задание «Найди значения выражений»:

1) 18 _ 4; 2) (32 + 18) _ 5; 3) 123 _ 7; 4) 23 _ 2; 5) 60 : 5 + 13 _ 6.

Ответы: Методика формирования у младших школьников вычислительной культуры

Источник

«Основные задачи методики преподавания математики»

задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Смотреть картинку задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Картинка про задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор. Фото задачи математики формулируются в виде вопросов ответ на вопрос зачем учить предполагает отбор

Доклад на тему: «Основные задачи методики преподавания математики»

Определить конкретные цели изучения математики по классам, темам урокам.

Отбирать содержание учебного предмета в соответствии с целями и познавательными возможностями учащихся.

Разработать наиболее рациональные методы и организационные формы обучения, направленные на достижение поставленных целей.

Рассмотреть необходимые средства обучения и разработать рекомендации по их применению в практике работы учителя.

Методика преподавания математики призвана дать ответы на следующие три вопроса: Зачем надо учить математике? Что надо изучать? Как надо обучать математике?

Выделенное ядро школьного курса математики составляет основу его базисной программы, которая является исходным документом для разработки тематических программ. В тематической программе для средней школы, кроме распределения учебного материала по классам, излагаются требования к знаниям, умениям и навыкам учащихся, раскрываются межпредметные связи, даются примерные нормы оценок.

За рубежом, в школах развитых стран, значительное место в программах по математике отводится теории вероятностей и статистике. В программах школ Японии раздел «Статистика» является основ-ным уже в 1-м классе начальной школы. Эле-менты теории вероятностей на строгой матема-тической основе вводятся в старших классах школ Бельгии и Франции. Геометрия как само-стоятельный учебный предмет во многих шко-лах не изучается, отдельные её вопросы вклю-чены в курс арифметики, алгебры и начал мате-матического анализа.

В большинстве развитых стран математическое образование на старшей ступени общеобразовательной подготовки диф-ференцировано в соответствии с определенным профилем специализации. На всех ступенях обучения боль-шую роль играет развитие функциональных представлений, овладение математическими методами, формирование исследовательских навыков.

В качестве недостатков традиционного обучения можно выделить:

преобладание словесных методов изложения, способствующих распылению внимания и невозможности его акцентирования на сущности учебного материала;

средний темп изучения математического материала;

большой объем материала, требующего запоминания;

недостаток дифференцированных заданий по математике и др.

Недостатки традиционного обучения можно устранить путем усовершенствования процесса ее преподавания.

Любой метод обучения предполагает цель, систему действий, средства обучения и намеченный результат. Объектом и субъектом метода обучения является ученик.

Очень редко какой-либо один метод обучения используется в чистом виде. Обычно преподаватель сочетает различные методы обучения. Методы в чистом виде применяют лишь в специально спланированных учебных или исследовательских целях.

Классификация методов обучения проводится по различным основаниям:

По дидактическим целям (методы изучения новых знаний, методы закрепления знаний, методы контроля).

По формам организации учебной деятельности.

По уровням самостоятельной активности учащихся.

По источникам передачи знаний ( А.А, Вагин, П.В. Гора):
* словесные: рассказ, лекция, беседа, инструктаж, дискуссия;
* наглядные: демонстрация, иллюстрация, схема, показ материала, график;
* практические: упражнение, лабораторная работа, практикум.

Новое содержание образования порождает новые методы в обучении математике. Необходим комплексный подход в применении методов обучения, их гибкость и динамичность.

Основными методами математического исследования являются: наблюдение и опыт; сравнение; анализ и синтез; обобщение и специализация; абстрагирование и конкретизация.

Современные методы обучения математике: проблемный (перспективный) метод; лабораторный метод; метод программированного обучения; эвристический метод; метод построения математических моделей, аксиоматический метод и др.

Информационно-развивающие методы обучения разделяются на два класса:

а) передача информации в готовом виде (лекция, объяснение, демонстрация учебных кинофильмов и видеофильмов, слушание магнитозаписей и др.);

К проблемно-поисковым методам относятся: проблемное изложение учебного материала (эвристическая беседа), учебная дискуссия, лабораторная поисковая работа (предшествующая изучению материала), организация коллективной мыслительной деятельности (КМД) в работе малыми группами, организационно-деятельностная игра, исследовательская работа.

Репродуктивные методы: пересказ учебного материала, выполнение упражнения по образцу, лабораторная работа по инструкции, упражнения на тренажерах.

Творчески-репродуктивные методы: сочинение, вариативные упражнения, анализ производственных ситуаций, деловые игры и другие виды имитации профессиональной деятельности.

Методы обучения постоянно дополняются современными методами обучения, главным образом ориентированными на обучение не готовым знаниям, а деятельности по самостоятельному приобретению новых знаний, т.е. познавательной деятельностью Новосельцева З.И. Развернутые планы лекций и учебные задания для удентов по курсу «Теоретические основы обучения математике»/ С.-Петербург, Изд-во «Образование», РГПУ, 1997.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *